Реферат: Электрические фильтры. Фильтры доклад


Электрические фильтры - (реферат)

Уже сейчас на сайте вы можете воспользоваться более чем 20 000 рефератами, докладами, шпаргалками, курсовыми и дипломными работами.Присылайте нам свои новые работы и мы их обязательно опубликуем. Давайте продолжим создавать нашу коллекцию рефератов вместе!!!

Вы согласны передать свой реферат (диплом, курсовую работу и т.п.), а также дальнейшие права на хранение,  и распространение данного документа администрации сервера "mcvouo.ru"?

Дата добавления: март 2006г.

    Электрические фильтры.

Электрическими частотными фильтрами называются четырехполюсники, ослабление которых в некоторой полосе частот мало, а в другой полосе частот -- велико. Диапазон частот, в котором ослабление мало, называется полосой пропускания, а диапазон частот, в котором ослабление велико -- полосой задерживания. Между этими полосами часто вводят полосу перехода.

Фильтры могут быть пассивными, состоящими из индуктивностей и емкостей (пассивные LC-фильтры), пассивными, состоящими из сопротивлений и емкостей (пассивные RC-фильтры), активными (ARC-фильтры), кварцевыми, магнитстрикционными, с переключающими конденсаторами, цифровыми (с использованием ЭВМ) и некоторыми другими. Фильтры LC имеют широкое распространение, но в настоящее время интенсивно вытесняются ARC-фильтрами. Чрезвычайно перспективными являются фильтры с переключающими конденсаторами (AC-фильтры). Кварцевые фильтры обеспецивают очень большие добротности (до десятков тысяч) на высоких частотах, а магнитострикционные--на низких. Фильтры с характеристиками Баттерворта, Чебышева, Золотарева. При синтезировании фильтров широкое распространение получили фильтры с характеристиками, названными именами крупных ученых, чьи труды использовались при разработке данных фильтров -- Баттерворта, Чебышева, Золотарева (С. Баттерворт -- инженер-электрик, исследовавший фильтры в 30-х годах прошлого (ХХ) века, П. Л. Чебышев (1821-1894) и Е. И. Золотарев (1847-1878) -- крупные математики, академики Петербургской академии наук).

Фильтрами с характеристиками Баттерворта называют фильтры, у которых в ФНЧ при нулевой частоте ослабление = 0, в полосе пропускания оно монотонно увеличивается, на граничной частоте достигает 3 дБ, а затем в полосе задержки постепенно возрастает. Чем больше звеньев имеет фильтр, т. е. чем выше его порядок, тем круче идет характеристика в полосе задержки и тем меньше ослабление в полосе пропускания. При этом следует иметь в виду, что элементы фильтра считают чисто реактивными. При наличии потерь характеристики искажаются и отличаются от рассматриваемых.

Фильтрами Чебышева называют фильтры, у которых характеристика ослабления в полосе пропускания имеет колебательный характер с амплитудой, не превышающей 3 дБ, а в полосе задерживания -- монотонно возрастающей, с крутизной, большей, чем у фильтра Баттерворта такого же порядка. Чем больше амплитуда ослабления в полосе пропускания, тем круче идет характеристика в полосе задерживания и наоборот, чем меньше амплитуда колебания в полосе пропускания, тем меньше крутизна характеристики в полосе задерживания.

Характеристика фильтра Золотарева имеет в полосе пропускания колебательный характер, а в полосе задерживания -- немонотонный, с характерными всплесками.

    Кварцевые фильтры.

В реальных условиях добротности катушек составляют десятки, иногда сотни, но для получения требуемых харктеристик в ряде случаев необходимы добротности значительно большие, прежде всего в полосовых фильтрах с узкой полосой пропускания. Для таких целей используют кварцевые фильтры.

Кварцевые фильтры работают по следующему принципу: в пластинке, вырезанной из природного материала -- кварца, обнаруживаются прямой и обратный пьезоэлектрический эффекты, состоящие в том, что при сжатии и растяжении пластинки, на одной ее поверхности появляется положительный заряд, а на другой -- отрицательный. Если же покрыть две грани пластинки металлом и приложить к ним переменое напряжение, то пластинка станет сжиматься и растягиваться, т. е. получаются механические колебания. Это называется обратным пьезоэлектрическим эффектом. Как всякая колебательная система, кварцевая пластинка имеет собственную частоту колебаний, которая зависит от её геометрических размеров. Собственная частота кварцевой пластинки при толщине 1 мм составляет единицы мегагерц.

    Магнитострикционные фильтры.

Колебательные системы могут быть как электрическими, так и механическими. Например, камертон, натянутая струна и тому подобные устройства являются типично колебательными системами. По принципу успользования колебательных свойств подобных деталей разработаны и используются в технике связи электромеханические фильтры, добротности которых весьма высокие -- порядка единиц тысяч. Принцип действия этих фильтров состоит в следующем. Оказалось, что некоторые материалы, например никель, феррит и другие, обладают свойствами изменять свою длинну при изменении магнитного поля, в котором они находятся. Подобный эффект называют магнитострикционным. Он используется в электромеханических магнитострикционных фильтрах, состоящих из жестко закреплённого никелевого или ферритового стержня длинной в несколько сантиметров. На стержне находится катушка с индуктивностью порядка десятка микрогенри и постоянный магнит. При протекании по катушке переменного тока магнитное поле изменяется, что приводит к изменению длинны стержней и их резонансным частотам.

Подобные фильтры называют также магнитострикционными резонаторами. В таких фильтрах W2/W3 = 1, 01 -- 1, 10, что соответствует добротностям 2000.... 4000 и во много раз превышает добротности, которые можно получить в LC-фильтрах.

    Линии задержки.

В любой цепи, содержащей накопители энергии, максимальные значения мгновенных выходных напряжений сдвинуты по времени относительно аналогчных максимальных входных напряжений. Например в нижеприведенной схеме выходное напряжение отстает по фазе от входного, из-за чего между этими напряжениями образуется сдвиг во времени. Такое время задержки называют групповым.

Следует отметить, что с повышением частоты время задержки сокращается т. к. ёмкость является частотозависимым элементом.

    Активные фильтры.

Фильтры класса ARC называются активными. На практике наибольшее распространение получили фильтры, у которых в качестве активных элементов используются операционные усилители.

    Цепи с переключающими конденсаторами.

Современная микроэлектроника позволяет изготавливать на одном кристалле и за один технологический цикл электронные устройства, содержащие большое число элементов -- резисторов, конденсаторов, транзисторов, ОУ и т. д... Однако объем, занимаемый резистором, значительно (иногда до 100 раз) превышает объем, занимаемый конденсатором, причем с увеличением сопротивления резистора увеличиваются его размеры. Таким образом оказалась чрезвычайно перспективной идея -- заменить резисторы некоторой, пусть даже многоэлементной схемой, но не содержащей резистивных элементов.

Такая замена весьма существенна также и потому, что уменьшение числа резисторов снижает потребляемую мощность и выделение тепла в микросхеме. Рассмотрим такую замену на схемах 1 и 2.

Пусть имеется схема 1, если U1 > U2, то по цепи потечет ток от точки а к точке в. Заменим теперь схему 1 схемой 2. переключатель К в некоторый момент переведём из положения 2 в положение 1. Поскольку напряжение на конденсаторе отлично от напряжения U1, конденсатор станет заряжаться и в ветви первого источника потечет ток, также, как он протекал в схеме 1. После переключения ключа в положение 2, конденсатор станет разряжаться и в проводнике в окажется ток. Эти переключения производят с достаточно большой частотой, которую называют тактовой. В качестве переключателя используют специальное электронное устройство, не содержащее резисторов.

    Цифровые фильтры.

Цифровые фильтры (эквалайзеры) получили широкое распространение благодаря интенсивному развитию ЭВМ.

Возможности таких эквалайзеров практически неограничены (зависит от сложности программы). При обработке цифровым эквалайзером есть возможность установить добротность до 10000,

коэффициент усиления на определенной частоте может достигать 50 дБ, а ослабления -- до отрицательной бесконечности (полного подавления частоты), чего никогда не удастся получить на аналоговых фильтрах! Цифровые эквалайзеры не дают фазовых сдвигов частот, хотя если надо это симитировать, то подобное не проблема. Цифровые эквалайзеры никогда не добавят шум в сигнал, т. к. обрабатывается оцифрованный сигнал и качество этой обработки зависит от сложности алгоритма, частоты дискретизации и битности.

Скачен 450 раз.

mcvouo.ru

Читать доклад по электротехнике: "Электрические фильтры"

(Назад) (Cкачать работу)

Функция "чтения" служит для ознакомления с работой. Разметка, таблицы и картинки документа могут отображаться неверно или не в полном объёме!

Электрические фильтры.

Электрическими частотными фильтрами называются четырехполюсники, ослабление которых в некоторой полосе частот мало, а в другой полосе частот -- велико. Диапазон частот, в котором ослабление мало, называется полосой пропускания, а диапазон частот, в котором ослабление велико -- полосой задерживания. Между этими полосами часто вводят полосу перехода.

Фильтры могут быть пассивными, состоящими из индуктивностей и емкостей (пассивные LC-фильтры), пассивными, состоящими из сопротивлений и емкостей (пассивные RC-фильтры), активными (ARC-фильтры), кварцевыми, магнитстрикционными, с переключающими конденсаторами, цифровыми (с использованием ЭВМ) и некоторыми другими. Фильтры LC имеют широкое распространение, но в настоящее время интенсивно вытесняются ARC-фильтрами. Чрезвычайно перспективными являются фильтры с переключающими конденсаторами (AC-фильтры). Кварцевые фильтры обеспецивают очень большие добротности (до десятков тысяч) на высоких частотах, а магнитострикционные--на низких.

Фильтры с характеристиками Баттерворта, Чебышева, Золотарева.

При синтезировании фильтров широкое распространение получили фильтры с характеристиками, названными именами крупных ученых, чьи труды использовались при разработке данных фильтров -- Баттерворта, Чебышева, Золотарева (С.Баттерворт -- инженер-электрик, исследовавший фильтры в 30-х годах прошлого (ХХ) века, П. Л. Чебышев (1821-1894) и Е. И. Золотарев (1847-1878) -- крупные математики, академики Петербургской академии наук).

Фильтрами с характеристиками Баттерворта называют фильтры, у которых в ФНЧ при нулевой частоте ослабление = 0, в полосе пропускания оно монотонно увеличивается, на граничной частоте достигает 3 дБ, а затем в полосе задержки постепенно возрастает. Чем больше звеньев имеет фильтр, т. е. чем выше его порядок, тем круче идет характеристика в полосе задержки и тем меньше ослабление в полосе пропускания. При этом следует иметь в виду, что элементы фильтра считают чисто реактивными. При наличии потерь характеристики искажаются и отличаются от рассматриваемых.

Фильтрами Чебышева называют фильтры, у которых характеристика ослабления в полосе пропускания имеет колебательный характер с амплитудой, не превышающей 3 дБ, а в полосе задерживания -- монотонно возрастающей, с крутизной, большей, чем у фильтра Баттерворта такого же порядка. Чем больше амплитуда ослабления в полосе пропускания, тем круче идет характеристика в полосе задерживания и наоборот, чем меньше амплитуда колебания в полосе пропускания, тем меньше крутизна характеристики в полосе задерживания.

Характеристика фильтра Золотарева имеет в полосе пропускания колебательный характер, а в полосе задерживания -- немонотонный, с характерными всплесками.Кварцевые фильтры.

В реальных условиях добротности катушек составляют десятки, иногда сотни, но для получения требуемых харктеристик в ряде случаев необходимы добротности значительно большие, прежде всего в полосовых фильтрах с узкой полосой пропускания. Для таких целей используют кварцевые фильтры.

Кварцевые фильтры работают по следующему принципу: в пластинке, вырезанной из природного материала -- кварца, обнаруживаются прямой и обратный пьезоэлектрический эффекты, состоящие в том, что при сжатии и растяжении пластинки, на одной ее поверхности появляется положительный заряд, а на другой -- отрицательный. Если же покрыть две грани пластинки металлом и приложить к ним переменое напряжение, то пластинка станет сжиматься и растягиваться, т. е. получаются механические колебания. Это называется обратным пьезоэлектрическим эффектом. Как всякая колебательная система, кварцевая пластинка имеет собственную частоту колебаний, которая зависит от её геометрических размеров. Собственная частота кварцевой пластинки при толщине 1 мм составляет единицы мегагерц.

Магнитострикционные фильтры.

Колебательные системы могут быть как электрическими, так и механическими. Например, камертон, натянутая струна и тому подобные устройства являются типично колебательными системами. По принципу успользования колебательных свойств подобных деталей разработаны и используются в технике связи электромеханические фильтры, добротности которых весьма высокие -- порядка единиц тысяч. Принцип действия этих фильтров состоит в следующем. Оказалось, что некоторые материалы, например никель, феррит и другие, обладают свойствами изменять свою длинну при изменении магнитного поля, в котором они находятся. Подобный эффект называют магнитострикционным. Он используется в электромеханических магнитострикционных фильтрах, состоящих из жестко закреплённого никелевого или ферритового стержня длинной в несколько сантиметров. На стержне находится катушка с индуктивностью порядка десятка микрогенри и постоянный магнит. При протекании по катушке переменного тока магнитное поле изменяется, что приводит к изменению длинны стержней и их резонансным частотам.

Подобные фильтры называют также магнитострикционными резонаторами. В таких фильтрах W2/W3 = 1,01 -- 1,10, что соответствует добротностям 2000...4000 и во много раз превышает добротности, которые можно получить в LC-фильтрах.

Линии задержки.

В любой цепи, содержащей накопители энергии, максимальные значения мгновенных выходных напряжений сдвинуты по времени относительно аналогчных максимальных входных напряжений. Например в нижеприведенной схеме выходное напряжение отстает по фазе от входного, из-за чего между этими напряжениями образуется сдвиг во времени. Такое время задержки называют групповым.

Следует отметить, что с повышением частоты время задержки сокращается т. к. ёмкость является частотозависимым элементом.

Активные фильтры.

Фильтры класса ARC называются активными. На практике наибольшее распространение получили фильтры, у которых в качестве активных элементов используются операционные усилители.

Цепи с переключающими конденсаторами.

Современная микроэлектроника позволяет изготавливать на одном кристалле и за один технологический цикл электронные устройства, содержащие большое число элементов -- резисторов, конденсаторов, транзисторов, ОУ и т. д.. Однако объем, занимаемый резистором, значительно (иногда до 100 раз) превышает объем, занимаемый конденсатором, причем с увеличением сопротивления резистора увеличиваются его размеры. Таким образом оказалась чрезвычайно перспективной идея -- заменить резисторы некоторой, пусть даже многоэлементной схемой, но не содержащей резистивных элементов.

Такая замена весьма существенна также и потому, что уменьшение числа резисторов снижает потребляемую мощность и выделение тепла в микросхеме.

Рассмотрим такую замену на схемах 1 и 2.

Пусть имеется схема 1, если U1 > U2, то по цепи потечет ток от точки а к точке в. Заменим теперь схему 1 схемой 2. переключатель К в некоторый момент переведём из положения 2 в положение 1. Поскольку напряжение на конденсаторе отлично от напряжения U1, конденсатор станет заряжаться и в ветви первого источника потечет ток, также, как он протекал в схеме 1. После переключения ключа в положение 2, конденсатор станет разряжаться и в проводнике в окажется ток. Эти переключения производят с достаточно большой частотой, которую называют тактовой. В качестве переключателя используют специальное электронное устройство, не содержащее резисторов.

Цифровые фильтры.

Цифровые фильтры (эквалайзеры) получили широкое распространение благодаря интенсивному развитию ЭВМ.

Возможности таких эквалайзеров практически неограничены (зависит от сложности программы). При обработке цифровым эквалайзером есть возможность установить добротность до 10000,

коэффициент усиления на определенной частоте может достигать 50 дБ, а ослабления -- до отрицательной бесконечности (полного подавления частоты), чего никогда не удастся получить на аналоговых фильтрах! Цифровые эквалайзеры не дают фазовых сдвигов частот, хотя если надо это симитировать, то подобное не проблема. Цифровые эквалайзеры никогда не добавят шум в сигнал, т. к. обрабатывается оцифрованный сигнал и качество этой обработки зависит от сложности алгоритма, частоты дискретизации и битности.

referat.co

Реферат: Активный фильтр низких частот

ПРАКТИЧЕСКАЯ ЧАСТЬ

 

 

Тип фильтра определяется допустимой неравномерностью его АЧХ в полосе пропускания. При dС =0 выбирается фильтр Баттерворта, а при dС ¹0 - фильтр Чебышева  Для dС = 3дБ  выбираем фильтр Чебышева.

Необходимый порядок фильтра ( n ) выбирается исходя из: минимального затухания в полосе заграждения dЗ и допустимой неравномерности его АЧХ в полосе пропускания dС .

 

, где   

 

Рассмотрим каскадную реализацию фильтра в виде последовательного соединения взаимонезаменяемых звеньев второго порядка (т.к. n=6 - четное), количество звеньев определяется соотношением

 

 (звена второго порядка)

 

Определим значения коэффициентов ai , bi полинома, аппроксимирующего передаточную функцию фильтра и добротности полюсов звеньев фильтра:

 

 

 

 

Для i=1 (первое звено) получим:

 

 

Для i=2 (второе звено) получим:

 

 

Для i=3 (третье звено) получим:

 

 

Расчет звеньев фильтра:

 

Исходя из добротностей для всех звеньев подходит схема звена второго порядка на повторителе:

 

Передаточная характеристика имеет вид :

 

Отсюда при извесных ai , bi wв рассчитываются элементы схемы:

1.    Выбираем значение емкости С1 близкое к

                                   

            и номинальное значение С2, удовлетворяющее условию:

 

                                   

 

a)    для первого звена

 

b)   для второго звена

 

c)    для третьего звена

 

2.    Рассчитываем величины R1 и R2 по соотношениям:

 

 

a)    для первого звена

 

b)   для второго звена

 

 

 

 

 

 

 

c)    для третьего звена

3.    Исходя из полученных результатов выбираем операционный усилитель : основными параметрами являются входное сопротивление, диапазон частот , минимальное сопротивление нагрузки.

 Приемлемым является ОУ - 140УД6

 

140УД6

Коэффициент усиления K, В/мВ

70

Напряжение смещения нуля Uсм, мВ

4

Входные токи Iвх, нА

30

Разность входных токов DIвх, нА

10

Частота единичного усиления f1,МГц

1

Коэффициент ослабления синфазного сигнала, дБ

80

Максимальный выходной ток Iвых max, мА

25

Входное сопротивление Rвх, Мом

2

Потребляемый ток Iпот, мА

2.8

Максимальное выходное напряжение Uвых max, В

12

 

 

Теоретическая часть

1.Введение

Простые RC - фильтры нижних  или верхних частот обеспечивают пологие характеристики коэффициента передачи с наклоном 6Дб/октава после точки,  соответствующей значению коэффициента передачи -3Дб. Для многих целей такие характеристики вполне подходят, особенно в тех случаях, когда сигнал, который должен быть подавлен, далеко сдвинут по частоте относительно полосы пропускания. В качестве примеров можно привести шунтирование радиочастотных сигналов в схемах усиления звуковых частот, «блокирующие» конденсаторы для устранения постоянной составляющей и разделения модулирующей и несущей частот.

Однако часто возникает необходимость в фильтрах с более пологой характеристикой в полосе пропускания и более крутыми склонами. Такая потребность существует всегда, когда надо отфильтровать сигнал от помехи близкой по частоте.

Активные фильтры можно использовать для реализации фильтров нижних (АФНЧ) и верхних (АФВЧ) частот, полосовых и полосно подавляющих фильтров, выбирая тип фильтра в зависимости от наиболее важной характеристики, таких, как максимальная равномерность усиления в полосе пропускания, крутизна переходной области характеристики или независимость времени запаздывания от частоты. Кроме того можно построить как  «всепропускающие фильтры» с плоской амплитудно-частотной характеристикой. Но не стандартной фазо-частотной характеристикой (они также известны как «фазовые корректоры»), так и наоборот - фильтры с постоянным фазовым сдвигом, но с произвольной амплитудно-частотной характеристикой

 

Типы фильтров

Предположим, что требуется фильтр нижних частот с плоской характеристикой в полосе пропускания и резким перходом в полосе подавления. Окончательный же наклон характеристики в полосе задерживания всегда будет 6n дБ/октава, где n-количество «полюсов». На каждый полюс необходим один конденсатор (или катушка индуктивности), поэтому требования к окончательной скорости спада частотной характеристики фильтра, грубо говоря, определяют его сложность.

Теперь предположим, что мы решили использовать 6-полюсный фильтр нижних частот. Нам гарантирован окончательный спад характеристики на высоких частотах 36 дБ/октава. В свою очередь теперь можно оптимизировать  схему фильтра в смысле обеспечения максимально плоской характеристики в полосе пропускания за счет уменьшения крутизны перехода от полосы пропускания к полосе задерживания. С другой стороны, допуская некоторую неравномерность характеристики в полосе пропускания, можно добиться более крутого перехода от полосы пропускания к полосе задерживания. Третий критерий, который может оказаться также важным, описывает способность фильтра пропускать сигналы со спектром, лежащим в полосе пропускания, без искажений их формы, вызываемых фазовыми сдвигами. Можно также интересоваться временем нарастания, выбросом и временем установления.

Извесны методы проектирования фильтров, пригодные для оптимизации любой из этих характеристик или их комбинации. Действительно разумный выбор фильтра происходит не так, как описано выше; как правило, сначала задаются требуемая равномерность характеристики в полосе попускания и необходимое затухание на некоторой частоте вне полосы пропускания и некоторые другие параметры. После этого выбирается наиболее подходящая схема с количеством полюсов, достаточным для того, чтобы удовлетворялись все эти требования. Имеется три наиболее популярных схемы фильтров, а именно фильтр Баттерворта (максимально плоская характеристика в полосе пропускания), фильтр Чебышева (наиболее крутой переход от полосы пропускания к полосе подавления) и фильтр Бесселя (максимально плоская характеристика времени запаздывания). Любой из этих типов фильтров можно реализовать с помощью различных схем фильтров. Все они разным образом годятся для построения фильтров верхних и нижних частот, а так же полосовых фильтров.

 

Фильтры Баттерворта и Чебышева

Фильтр Баттерворта обеспечивает наиболее плоскую характеристику в полосе пропускания, что достигается ценой плавности характерисатики в переходной области, т.е. между полосами пропускания и задерживания. Его амплитудно частотная характеристика задаётся следующей формулой:

,

где n - определяет порядок фильтра (число полюсов). Увеличение числа полюсов дает возможность увеличить крутизну спада от полосы пропускания к полосе подавления.

Выбирая фильтр Баттерворта мы ради плоской характеристики поступаемся всем остальным. Его характеристика идет горизонтально, начиная от нулевой частоты, перегиб ее начинается на частоте среза fC - эта частота обычно соответствует точке -3 дБ.

В большинстве применений самым существенным обстоятельством является то, что неравномерновть характеристики в полосе пропускания недолжна превыщать некоторой величины, скажем 1 дБ. Фильтр Чебышева отвечает этому требованию, при этом допускается некоторая неравномерность харкктеристики по всей полосе пропускания, но при этом сильно увеличивается острота её излома. Для фильтра Чебышева задают число полюсов и неравномерность в полосе пропускания. Допуская увеличение неравномерности в полосе пропускания., получаем более острый излом. Амплитудная характеристика этого фильтра описывается уравнением:

,

где Сn - полином Чебышева первого рода степени n, а e - константа, определяющая неравномерность характеристики в полосе её пропускания. Фильтр Чебышева, как и фильтр Баттерворта имеет фазо-частотные характеристики далекие от идеальных.

На самом деле фильтр Баттерворта с максимально плоской характеристикой в полосе пропускания не так привлекателен, как это может показаться, поскольку в любом случае приходится мириться с некоторой неравномерностью характеристики в полосе пропускания (для фильтра Баттерворта это будет постепенное понижение характеристики при приближении к частоте fc, а для фильтра Чебышева - пульсации, распределенные по всей полосе пропускания). Кроме того, активные фильтры, построенные из элементов, номиналы которых имеют некоторый допуск, будут обладать характеристикой, отличающейся от рассчетной, а это значит, что в действительности на характеристике фильтра Баттерворта всегда будет иметь место некоторая неравномерность в полосе пропускания.

В свете вышеизложеного весьма рациональной структурой является фильтр Чебышева. Иногда его называют равноволновым фильтром, так как его характеристика в области перехода имеет большую крутизну за счет того, что в полосе пропускания распределено несколько равновеликих пульсаций, число которых возрастает вместе с порядком фильтра.  Даже при сравнительно малых пульсациях (порядка 0,1дБ ) фильтр Чебышева обеспечивает намного большую крутизну характеристики в преходной области, чем фильтр Баттерворта. Чтобы выразить эту разницу количественно, предположим, что требуется фильтр с неравномерностью характеристики в полосе пропускания не более 0,1 дБ и затуханием на частоте, отличающецся на 25% от граничной частоты пропускания. Расчет показывает, что в этом случае требуется 19-полюсной фильтр Баттерворта или всего лишь 8-полюсный фильтр Чебышева.

Мысль о том, что можно мириться с пульсациями характеристики в полосе пропускания ради крутизны переходного участка характеристики, доводиться до своего логического завершения в идее так называемого элептического фильтра (или фильтра Кауэра), в котором допускаются пульсации характеристики как в полосе пропускания, так и в полосе задерживания ради обеспечения крутизны переходного участка даже большей, чем у характеристики фильтра Чебышева. С помощью ЭВМ можно сконструировать эллиптические фильтры так же просто, как и классические фильтры Чебышева и Баттерворта.

www.referatmix.ru

Доклад Filter

Filter

Американский индастриал-проект "Filter" появился на свет в виде дуэта: Брайан Лайзгэнг (программинг, гитара, клавишные, ударные) и Ричард Патрик (вокал, гитара, бас, программинг, ударные). Пока Патрик проводил эксперименты в восьмидорожечной студии в своем родном Кливленде, Лэйзгэнг получал философскую степень в чикагском университете и параллельно развлекался в студии, находившейся рядом с владениями Боба Муга (изобретателя современного синтезатора). Позже парни познакомились через общего приятеля, а решение заниматься совместной деятельностью созрело в их головах во время путешествия по Великому

Каньону.

Летом 1994-го "Filter" приступили к записи первого альбома, и уже к концу года работа была завершена. Диск вышел в 1995-м на "Reprise records", причем продюсировал его Бен Гросс ("Jane's addiction", " Red hot chili peppers").

К удивлению самих музыкантов успех не замедлил себя ждать, и открывающий трек "Hey man, nice shot" стал хитом. Впоследствии эта агрессивно-индустриальная вещица прозвучала в саундтреке к фильму "The cable guy". Брайан и Ричард не стали ограничиваться студийной деятельностью и собрали концертную конфигурацию "Filter", включавшую в себя Джено Ленардо (гитара), Мэтта Уолкера (ударные) и Фрэнка Каванага (бас). В таком виде команда гастролировала вплоть до августа 1996-го, а потом Уолкер подался в " Smashing pumpkins".

Прошло чуть больше года, и коллектив покинул один из его основателей, Брайан Лайзгэнг, возжелавший заняться сольной карьерой. Кстати, Патрику в тот год тоже было не до "Filter", поскольку он работал вместе с "Crystal method" над саундтреком к фильму "Spawn". Вторая же "фильтрованная" студийная работа появилась только спустя пару лет. Помимо Ричарда Патрика (вокал, гитара) над ней трудились Джено Ленардо (гитара), Фрэнк Каванаг (бас) и Стив Джиллис (ударные).

Усилия музыкантов не пропали даром, и альбом имел успех не только в Америке, но и во многих других странах (например, 75-е место в Англии и 12-е – в Новой Зеландии). В конечном итоге "Title Of Record" обрел заслуженный платиновый статус. Из всех треков на диске явно выделялась печальная и мелодичная композиция "Take a picture", ставшая хитом. Тур в поддержку альбома длился целых два года, в течение которых "Filter" исколесили четыре континента. Однако по возвращении домой музыкантам не пришлось долго отдыхать, и вскоре они приступили к работе над третьим альбомом.

Новый диск получил забавное название "Amalgamut" (от "amalgamation" – "объединение" и "mutt" – "балбес"), в переводе на русский примерно означавшее "объединение балбесов". В студии помимо "фильтровщиков" находились все тот же продюсер Бен Гросс и звукорежиссер Раэ Дилео. Вся эта компания потрудилась на славу, и появившийся на свет в июле 2002-го "Amalgamut" занял достойное 32-е место в чартах "Billboard".

Состав

Richard Patrick - вокал, гитара

Frank Cavanagh - бас

Geno Lenardo - гитара

Steve Gillis - ударные

Дискография

Short Bus - 1995

Title Of Record - 1999

Amalgamut - 2002

Список литературы

Для подготовки данной работы были использованы материалы с сайта http://hardrockcafe.narod.ru/

bukvasha.ru

Электрические фильтры

Скачать: Электрические фильтры

Электрические фильтры

Электрическими частотными фильтрами называются четырехполюсники, ослабление которых в некоторой полосе частот мало, а в другой полосе частот -- велико. Диапазон частот, в котором ослабление мало, называется полосой пропускания, а диапазон частот, в котором ослабление велико -- полосой задерживания. Между этими полосами часто вводят полосу перехода.

  Фильтры могут быть пассивными, состоящими из индуктивностей и емкостей (пассивные LC-фильтры), пассивными, состоящими из сопротивлений и емкостей (пассивные RC-фильтры), активными (ARC-фильтры), кварцевыми, магнитстрикционными, с переключающими конденсаторами, цифровыми (с использованием ЭВМ) и некоторыми другими. Фильтры LC имеют широкое распространение, но в настоящее время интенсивно вытесняются ARC-фильтрами. Чрезвычайно перспективными являются фильтры с переключающими конденсаторами (AC-фильтры). Кварцевые фильтры обеспецивают очень большие добротности (до десятков тысяч) на высоких частотах, а магнитострикционные на низких.

Фильтры с характеристиками Баттерворта, Чебышева, Золотарева

При синтезировании фильтров широкое распространение получили фильтры с характеристиками, названными именами крупных ученых, чьи труды использовались при разработке данных фильтров -- Баттерворта, Чебышева, Золотарева (С.Баттерворт -- инженер-электрик, исследовавший фильтры в 30-х годах прошлого (ХХ) века, П. Л. Чебышев (1821-1894) и Е. И. Золотарев (1847-1878) -- крупные математики, академики Петербургской академии наук).

Фильтрами с характеристиками Баттерворта называют фильтры, у которых в ФНЧ при нулевой частоте ослабление = 0, в полосе пропускания оно монотонно увеличивается, на граничной частоте достигает 3 дБ, а затем в полосе задержки постепенно возрастает. Чем больше звеньев имеет фильтр, т. е. чем выше его порядок, тем круче идет характеристика в полосе задержки и тем меньше ослабление в полосе пропускания. При этом следует иметь в виду, что элементы фильтра считают чисто реактивными. При наличии потерь характеристики искажаются  и отличаются от рассматриваемых.

Фильтрами Чебышева называют фильтры, у которых характеристика ослабления в полосе пропускания имеет колебательный характер с амплитудой, не превышающей 3 дБ, а в полосе задерживания -- монотонно возрастающей, с крутизной, большей, чем у фильтра Баттерворта такого же порядка. Чем больше амплитуда ослабления в полосе пропускания, тем круче идет характеристика в полосе задерживания  и наоборот, чем меньше амплитуда колебания в полосе пропускания, тем меньше крутизна характеристики в полосе задерживания.

Характеристика фильтра Золотарева имеет в полосе пропускания колебательный характер, а в полосе задерживания -- немонотонный, с характерными всплесками.

 Кварцевые фильтры.

В реальных условиях добротности катушек составляют десятки, иногда сотни, но для получения требуемых харктеристик в ряде случаев  необходимы добротности значительно большие, прежде всего в полосовых фильтрах с узкой полосой пропускания. Для таких целей используют кварцевые фильтры.

Кварцевые фильтры работают по следующему принципу: в пластинке, вырезанной из природного материала -- кварца, обнаруживаются прямой и обратный пьезоэлектрический эффекты, состоящие в том, что при сжатии и растяжении пластинки, на одной ее поверхности появляется положительный заряд, а на другой -- отрицательный. Если же покрыть две грани пластинки металлом и приложить к ним переменое напряжение, то пластинка станет сжиматься и растягиваться, т. е. получаются механические колебания. Это называется обратным пьезоэлектрическим эффектом. Как всякая колебательная система, кварцевая пластинка имеет собственную частоту колебаний, которая зависит от её геометрических размеров. Собственная частота кварцевой пластинки при толщине 1 мм составляет единицы мегагерц.

 Магнитострикционные фильтры

Колебательные системы могут быть как электрическими, так и механическими. Например, камертон, натянутая струна и тому подобные устройства являются типично колебательными системами. По принципу успользования колебательных свойств подобных деталей разработаны и используются в технике связи электромеханические фильтры, добротности которых весьма высокие -- порядка единиц тысяч. Принцип действия этих фильтров состоит в следующем. Оказалось, что некоторые материалы, например никель, феррит и другие, обладают свойствами изменять свою длинну при изменении магнитного поля, в котором они находятся. Подобный эффект называют магнитострикционным. Он используется в электромеханических магнитострикционных фильтрах, состоящих из жестко закреплённого никелевого или ферритового стержня длинной в несколько сантиметров. На стержне находится катушка с индуктивностью порядка десятка микрогенри и постоянный магнит. При протекании по катушке переменного тока магнитное поле изменяется, что приводит к изменению длинны стержней и их резонансным частотам.

Подобные фильтры называют также магнитострикционными резонаторами. В таких фильтрах W2/W3 = 1,01 -- 1,10, что соответствует добротностям 2000...4000 и во много раз превышает добротности, которые можно получить в LC-фильтрах.

Линии задержки

В любой цепи, содержащей накопители энергии, максимальные значения мгновенных выходных напряжений сдвинуты по времени относительно аналогчных максимальных входных напряжений. Например в нижеприведенной схеме выходное напряжение отстает по фазе от входного, из-за чего между этими напряжениями образуется сдвиг во времени. Такое время задержки называют групповым.

Следует отметить, что с повышением частоты время задержки сокращается т. к. ёмкость является частотозависимым элементом.

Активные фильтры

Фильтры класса ARC называются активными. На практике наибольшее распространение получили фильтры, у которых в качестве активных элементов используются операционные усилители.

Цепи с переключающими конденсаторами.

Современная микроэлектроника позволяет изготавливать на одном кристалле и за один технологический цикл электронные устройства, содержащие большое число элементов -- резисторов, конденсаторов, транзисторов, ОУ и т. д.. Однако объем, занимаемый резистором, значительно (иногда до 100 раз) превышает объем, занимаемый конденсатором, причем с увеличением сопротивления резистора увеличиваются его размеры. Таким образом оказалась чрезвычайно перспективной идея -- заменить резисторы некоторой, пусть даже многоэлементной схемой, но не содержащей резистивных элементов. 

Такая замена весьма существенна также и потому, что уменьшение числа резисторов снижает потребляемую мощность и выделение тепла в микросхеме.

Рассмотрим такую замену на схемах 1 и 2.

Пусть имеется схема 1, если U1 > U2, то по цепи потечет ток от точки а к точке в. Заменим теперь схему 1 схемой 2. переключатель К в некоторый момент переведём из положения 2 в положение 1. Поскольку напряжение на конденсаторе отлично от напряжения U1, конденсатор станет заряжаться  и в ветви первого источника потечет ток, также, как он протекал в схеме 1. После переключения ключа в положение 2, конденсатор станет разряжаться и в проводнике в окажется ток. Эти переключения производят с достаточно большой частотой, которую называют тактовой. В качестве переключателя используют специальное электронное устройство, не содержащее резисторов.

Цифровые фильтры.

Цифровые фильтры (эквалайзеры) получили широкое распространение благодаря интенсивному развитию ЭВМ.

Возможности таких эквалайзеров практически неограничены (зависит от сложности программы). При обработке цифровым эквалайзером есть возможность установить добротность до 10000,

коэффициент усиления на определенной частоте может достигать 50 дБ, а ослабления -- до отрицательной бесконечности (полного подавления частоты), чего никогда не удастся получить на аналоговых фильтрах! Цифровые эквалайзеры не дают фазовых сдвигов частот, хотя если надо это симитировать, то подобное не проблема. Цифровые эквалайзеры никогда не добавят шум в сигнал, т. к. обрабатывается оцифрованный сигнал и качество этой обработки зависит от сложности алгоритма, частоты дискретизации и битности.

  © Реферат плюс

referatplus.ru

Реферат: Электрические фильтры

Электрическими частотными фильтрами называются четырехполюсники, ослабление которых в некоторой полосе частот мало, а в другой полосе частот -- велико. Диапазон частот, в котором ослабление мало, называется полосой пропускания, а диапазон частот, в котором ослабление велико -- полосой задерживания. Между этими полосами часто вводят полосу перехода.

Фильтры могут быть пассивными, состоящими из индуктивностей и емкостей (пассивные LC-фильтры), пассивными, состоящими из сопротивлений и емкостей (пассивные RC-фильтры), активными (ARC-фильтры), кварцевыми, магнитстрикционными, с переключающими конденсаторами, цифровыми (с использованием ЭВМ) и некоторыми другими. Фильтры LC имеют широкое распространение, но в настоящее время интенсивно вытесняются ARC-фильтрами. Чрезвычайно перспективными являются фильтры с переключающими конденсаторами (AC-фильтры). Кварцевые фильтры обеспецивают очень большие добротности (до десятков тысяч) на высоких частотах, а магнитострикционные--на низких.

Фильтры с характеристиками Баттерворта, Чебышева, Золотарева.

При синтезировании фильтров широкое распространение получили фильтры с характеристиками, названными именами крупных ученых, чьи труды использовались при разработке данных фильтров -- Баттерворта, Чебышева, Золотарева (С.Баттерворт -- инженер-электрик, исследовавший фильтры в 30-х годах прошлого (ХХ) века, П. Л. Чебышев (1821-1894) и Е. И. Золотарев (1847-1878) -- крупные математики, академики Петербургской академии наук).

Фильтрами с характеристиками Баттерворта называют фильтры, у которых в ФНЧ при нулевой частоте ослабление = 0, в полосе пропускания оно монотонно увеличивается, на граничной частоте достигает 3 дБ, а затем в полосе задержки постепенно возрастает. Чем больше звеньев имеет фильтр, т. е. чем выше его порядок, тем круче идет характеристика в полосе задержки и тем меньше ослабление в полосе пропускания. При этом следует иметь в виду, что элементы фильтра считают чисто реактивными. При наличии потерь характеристики искажаются и отличаются от рассматриваемых.

Фильтрами Чебышева называют фильтры, у которых характеристика ослабления в полосе пропускания имеет колебательный характер с амплитудой, не превышающей 3 дБ, а в полосе задерживания -- монотонно возрастающей, с крутизной, большей, чем у фильтра Баттерворта такого же порядка. Чем больше амплитуда ослабления в полосе пропускания, тем круче идет характеристика в полосе задерживания и наоборот, чем меньше амплитуда колебания в полосе пропускания, тем меньше крутизна характеристики в полосе задерживания.

Возможно вы искали - Реферат: Электрический ток в вакууме. Электронные лампы. Их применение

Характеристика фильтра Золотарева имеет в полосе пропускания колебательный характер, а в полосе задерживания -- немонотонный, с характерными всплесками.

Кварцевые фильтры.

В реальных условиях добротности катушек составляют десятки, иногда сотни, но для получения требуемых харктеристик в ряде случаев необходимы добротности значительно большие, прежде всего в полосовых фильтрах с узкой полосой пропускания. Для таких целей используют кварцевые фильтры.

Кварцевые фильтры работают по следующему принципу: в пластинке, вырезанной из природного материала -- кварца, обнаруживаются прямой и обратный пьезоэлектрический эффекты, состоящие в том, что при сжатии и растяжении пластинки, на одной ее поверхности появляется положительный заряд, а на другой -- отрицательный. Если же покрыть две грани пластинки металлом и приложить к ним переменое напряжение, то пластинка станет сжиматься и растягиваться, т. е. получаются механические колебания. Это называется обратным пьезоэлектрическим эффектом. Как всякая колебательная система, кварцевая пластинка имеет собственную частоту колебаний, которая зависит от её геометрических размеров. Собственная частота кварцевой пластинки при толщине 1 мм составляет единицы мегагерц.

Магнитострикционные фильтры.

Колебательные системы могут быть как электрическими, так и механическими. Например, камертон, натянутая струна и тому подобные устройства являются типично колебательными системами. По принципу успользования колебательных свойств подобных деталей разработаны и используются в технике связи электромеханические фильтры, добротности которых весьма высокие -- порядка единиц тысяч. Принцип действия этих фильтров состоит в следующем. Оказалось, что некоторые материалы, например никель, феррит и другие, обладают свойствами изменять свою длинну при изменении магнитного поля, в котором они находятся. Подобный эффект называют магнитострикционным. Он используется в электромеханических магнитострикционных фильтрах, состоящих из жестко закреплённого никелевого или ферритового стержня длинной в несколько сантиметров. На стержне находится катушка с индуктивностью порядка десятка микрогенри и постоянный магнит. При протекании по катушке переменного тока магнитное поле изменяется, что приводит к изменению длинны стержней и их резонансным частотам.

Похожий материал - Реферат: Электрическое активное сопротивление

Подобные фильтры называют также магнитострикционными резонаторами. В таких фильтрах W2/W3 = 1,01 -- 1,10, что соответствует добротностям 2000...4000 и во много раз превышает добротности, которые можно получить в LC-фильтрах.

Линии задержки.

В любой цепи, содержащей накопители энергии, максимальные значения мгновенных выходных напряжений сдвинуты по времени относительно аналогчных максимальных входных напряжений. Например в нижеприведенной схеме выходное напряжение отстает по фазе от входного, из-за чего между этими напряжениями образуется сдвиг во времени. Такое время задержки называют групповым.

Следует отметить, что с повышением частоты время задержки сокращается т. к. ёмкость является частотозависимым элементом.

Очень интересно - Реферат: Электроизоляционная керамика

Активные фильтры.

Фильтры класса ARC называются активными. На практике наибольшее распространение получили фильтры, у которых в качестве активных элементов используются операционные усилители.

Цепи с переключающими конденсаторами.

Современная микроэлектроника позволяет изготавливать на одном кристалле и за один технологический цикл электронные устройства, содержащие большое число элементов -- резисторов, конденсаторов, транзисторов, ОУ и т. д.. Однако объем, занимаемый резистором, значительно (иногда до 100 раз) превышает объем, занимаемый конденсатором, причем с увеличением сопротивления резистора увеличиваются его размеры. Таким образом оказалась чрезвычайно перспективной идея -- заменить резисторы некоторой, пусть даже многоэлементной схемой, но не содержащей резистивных элементов.

Такая замена весьма существенна также и потому, что уменьшение числа резисторов снижает потребляемую мощность и выделение тепла в микросхеме.

Рассмотрим такую замену на схемах 1 и 2.

Вам будет интересно - Реферат: Электромагнитная совместимость сотовых сетей связи

Пусть имеется схема 1, если U1 > U2, то по цепи потечет ток от точки а к точке в. Заменим теперь схему 1 схемой 2. переключатель К в некоторый момент переведём из положения 2 в положение 1. Поскольку напряжение на конденсаторе отлично от напряжения U1, конденсатор станет заряжаться и в ветви первого источника потечет ток, также, как он протекал в схеме 1. После переключения ключа в положение 2, конденсатор станет разряжаться и в проводнике в окажется ток. Эти переключения производят с достаточно большой частотой, которую называют тактовой. В качестве переключателя используют специальное электронное устройство, не содержащее резисторов.

Цифровые фильтры.

Цифровые фильтры (эквалайзеры) получили широкое распространение благодаря интенсивному развитию ЭВМ.

Возможности таких эквалайзеров практически неограничены (зависит от сложности программы). При обработке цифровым эквалайзером есть возможность установить добротность до 10000,

коэффициент усиления на определенной частоте может достигать 50 дБ, а ослабления -- до отрицательной бесконечности (полного подавления частоты), чего никогда не удастся получить на аналоговых фильтрах! Цифровые эквалайзеры не дают фазовых сдвигов частот, хотя если надо это симитировать, то подобное не проблема. Цифровые эквалайзеры никогда не добавят шум в сигнал, т. к. обрабатывается оцифрованный сигнал и качество этой обработки зависит от сложности алгоритма, частоты дискретизации и битности.

Похожий материал - Реферат: Электроника

cwetochki.ru