Доклад: Фильтр верхних частот Баттерворта. Доклад фильтры


Реферат Фильтр

Опубликовать скачать

Реферат на тему:

План:

    Введение
  • 1 Фильтры жидкости
  • 2 Фильтры газа
  • 3 Фильтры в электронике и электрике
  • 4 Другие

Введение

Фильтр — устройство для «фильтрации» или «фильтрования» — выделения (или удаления) из потока частиц/жидкости/газов/смесей или сигнала (набора гармонических колебаний или любого другого) некоторой части с заданными свойствами.

1. Фильтры жидкости

  • Фильтрация (гидротехника) — процесс разделения неоднородных систем (например, суспензия, аэрозоль) при помощи пористых перегородок, пропускающих дисперсионную среду и задерживающих дисперсную твёрдую фазу.
  • Фильтр воды — устройство для очистки воды от вредных субстанций или микроорганизмов.
    • Аквариумный фильтр — устройство предназначенное для очистки аквариумной воды.
  • Масляный фильтр  — устройство, предназначенное для удаления загрязнений из моторных, трансмиссионных, смазочных масел и гидравлических жидкостей.
  • Топливный фильтр.
  • Фильтр-пресс  — аппарат периодического действия для разделения под давлением жидких неоднородных систем (суспензий, пульп) на жидкую фазу (фильтрат) и твердую фазу (осадок, кек).

2. Фильтры газа

  • Воздушный фильтр — элемент (бумажный, матерчатый, войлочный, поролоновый, сетчатый или иной), который служит для очистки от пыли (обработки) воздуха, подаваемого в помещения системами вентиляции и кондиционирования или используемого в технологических процессах (например, при получении кислорода), в газовых турбинах, в двигателях внутреннего сгорания и др.
    • Сигаретный фильтр — фильтр, применяемый в сигаретах для уменьшения количества вдыхаемой курильщиком смолы.

3. Фильтры в электронике и электрике

  • Фильтр (электроника) — устройство для выделения желательных компонент спектра аналогового сигнала и подавления нежелательных.
  • Коаксиальный фильтр — электрический фильтр, состоящий из элементов (отрезков) коаксиального кабеля, для селекции сигналов на дециметровом и сантиметровом диапазонах волн.
  • Цифровой фильтр — устройство для обработки дискретного во времени сигнала; в результате обработки спектральный состав сигнала меняется требуемым образом.

4. Другие

  • Фильтр (информатика) — компьютерная программа, выделяющая из данных только те, которые нужны пользователю.
  • Фильтр (математика) — понятие из теории решёток и общей топологии.
  • Светофильтр — оптическое устройство, которое служит для подавления (выделения) части спектра в оптическом диапазоне.
  • Биофильтр — фильтр, использующий способность живых организмов (бактерий, растений и пр.) усваивать вредные вещества или перерабатвать их в безвредные.
  • Фильтр конфиденциальности — специальная пленка, которая уменьшает углы обзора дисплея.
скачатьДанный реферат составлен на основе статьи из русской Википедии. Синхронизация выполнена 12.07.11 10:29:11Похожие рефераты: КИХ-фильтр, БИХ-фильтр, Воздушный фильтр, Фильтр воды, Ферритовый фильтр, Сглаживающий фильтр, Масляный фильтр, Фильтр Калмана, Согласованный фильтр.

Категории: Многозначные термины.

Текст доступен по лицензии Creative Commons Attribution-ShareAlike.

wreferat.baza-referat.ru

Реферат Фильтрация

РефератРабота добавлена на сайт bukvasha.ru: 2015-10-28

Исходные данные

зада –

ния

Производитель –

Ность

*10 5

Па

Хс,

%

( масс)

W ,

%

(масс)

кг/ м3

rт,

кг/ м3

m*10-3

Пас

m пр

*10-3

Па с

Vпр

103

м3 / кг

Rф.п.

10-9,

1/ м

Vc ,

м3/ час

Gт ,

кг/час

8 - 432,0 6,0 8,5 55 1070 2360 1,30 1,27 1,2 39,0
                № 

Величины

8  
r0,.10-12,

1/ м2

-  
rm.10-9 ,

м/ кг

54  
 

1 Расчет  процесса и выбор аппарата

Фильтрование – это технологическая операция разделения неоднородных (гетерогенных) систем – суспензий или аэрозолей при помощи пористых (фильтровальных) перегородок, задерживающих твердую (дисперсную) фазу и пропускающих жидкую или газовую фазу (дисперсионную среду). Движущая сила процесса - разность давлений по обе стороны фильтровальной перегородки. Процессы фильтрования суспензий и дымов обычно рассматривают раздельно. В данной работе в дальнейшем речь пойдет лишь о фильтровании водных суспензий.

1.1. Методика расчета процессов фильтрования

Расчет процесса фильтрования включает следующие этапы:

·        составление материального баланса и определение материальных потоков;

·        определение необходимой поверхности фильтрования для обеспечения заданной производительности фильтра;    

·        вычисление объема промывной жидкости;   

·        определение продолжительности промывки осадка.

Методика расчета зависит от типа и конструктивных особенностей фильтра, характера заданных и определяемых величин и условий проведения процесса фильтрования.

2 Материальный баланс процесса фильтрования

Материальный баланс для процесса фильтрования составляют для определения производительности  фильтровальной установки по осадку, фильтрату или исходной суспензии. Соответствующие уравнения имеют вид:

для всей гетерогенной системы                                       Gс  =  Gф  +   Gос ,                                                   (1) для твердой фазы                                        Gс.Хс=  Gос.Хос ,                                                     (2)   или

                                        Gс.Хс   =   Gос(1 - W),     где                                 W  =  (1 - Хос) – влажность осадка.Решая уравнения (1) и (2), определяем составляющие материального

баланса.Определяем массу суспензии:т.к. Gт  =  Gс.Хс, то Gс  =  GТ/ХсGc = 432*100/8,5 = 5082,3кг/чОпределяем массу жидкой фазы:Gж = Gс -  Gт

Gж = 5082,3  - 432 = 4650,3 кг/ч Массовая концентрация в осадке равна                                                                              X ос = W – 1Xос = 0,55 – 1 = 0,45 или 45%Определяем массу влажного осадка:т.к.  Gс·Хс=  Gос·Хос,то           Определяем массу жидкой фазы во влажном осадке:Gж (ос)=   Gос  -   Gт = 960 – 432 = 528 кг/ч           Определяем массу фильтрата:                                              т.к. Gс  =  Gф  +   Gосто Gф  =   Gс  -  Gос = 5082,3 – 960 = 4122 кг/чРезультаты представляем в виде таблицы (табл. 1)

          Таблица 1

Материальный баланс (кг/час)

Приход,  кг/час Расход,  кг/час
С    суспензией 5082,3 С   осадком 960
В  том  числе: В том числе:
Твердая фаза 432 Твердая фаза 432
Жидкая  фаза 4650,3 Жидкая фаза 528
С  фильтратом 4122
Всего 5082,3 Всего 5082
         

Материальный баланс сошелся.

Переход от весовых величин к объемным осуществляем с помощью плотностей соответствующих потоков (фаз). При этом плотность суспензии определяется в зависимости от способа выражения концентрации твердой фазы по уравнениям                                                                       (3)                                                                            (4)

                                                                           (5)

Аналогично определяют плотность влажного осадка, используя величины Хос, и Сос или понятие пористости слоя осадка :                                      ,

откуда                                     ,                                    (6) и влажности осадка W, тогда                                                                          (7)Вычисляем плотность суспензии и влажного осадка:

3 Уравнение фильтрования с образованием слоя осадка

Как показывает опыт, скорость фильтрования прямо пропорциональна движущей силе Р (разности давлений по обе стороны фильтровальной зоны) и обратно пропорциональна сопротивлению, возникающему в фильтровальной зоне (под фильтровальной зоной следует понимать фильтровальную перегородку со слоем образующегося на ней осадка). Скорость фильтрования можно определить как объем фильтрата Vф, проходящий через единицу поверхности  S фильтровальной зоны за единицу времени .Гидравлическое сопротивление фильтровальной зоны представляет сумму  сопротивлений фильтровальной перегородки Rф.п. и слоя осадка Rос.

Сказанному соответствует дифференциальное уравнение скорости фильтрования:                                   =                                                     (8)Сопротивление слоя осадка, очевидно, является функцией его толщины H, и для ламинарного режима течения фильтрата в фильтровальной зоне, что обычно и реализуется на практике, может быть представлено как                                    Rос = r0.H                                                                    (9).

Коэффициент пропорциональности r0  (удельное объемное сопротивление осадка) имеет физический смысл величины гидравлического сопротивления равномерного слоя осадка толщиной 1 м.

Пренебрегая  влиянием величины слоя осадка, образующегося за счет естественного (гравитационного) осаждения твердой фазы на рост толщины слоя осадка, можно принять, что его объем прямо пропорционален соответствующему объему фильтрата:

                                                V ос = H.S = Х0.Vф,
откуда                                                  H = Х0                                                                 (10)Коэффициент пропорциональности Х0 зависит от структуры осадка и от концентрации твердой фазы в суспензии

С учетом выражений (9) и (10) общее уравнение скорости фильтрования (8) можно представить в виде, более удобном для интегрирования:                                                                             (11)В практике проведения технологических расчетов процессов фильтрования наряду с объемным удельным сопротивлением осадка  r0  пользуются также величиной среднего массового удельного сопротивления осадка rm  . Эти величины связаны между собой соотношением:                                   r0 ·Х0  =  rm ·Хm                                                           (12)Здесь Хm  =  mт|./ Vф – масса твердой фазы осадка, образующегося при получении единицы объема фильтрата. Величины r0 и  rm могут быть определены непосредственно из эксперимента или как функции движущей силы процесса фильтрования, а Х0, Хm – из выражений

                                      Х 0  = ,                                           (13)                                      Х m =                                                    (14)Величину Rф.п. в уравнении (11) можно считать постоянной (не зависящей от ) величиной, которая также определяется из эксперимента.

Величины r0 , rm  , Rф.п. , Х0 , Хm  называют также константами  фильтрования.

Общее уравнение фильтрования (11) необходимо интегрировать по-разному в зависимости от следующих условий проведения процесса:

·        фильтрование при постоянной движущей силе;

·        фильтрование при постоянной скорости;

·        фильтрование при постоянных движущей силе и скорости;

·        фильтрование при переменных движущей силе и скорости.Поскольку в практике большинство фильтров работает в режиме постоянной движущей силы, а промывку можно рассматривать как фильтрование при постоянных движущей силе и скорости, представим результаты интегрирования основного уравнения фильтрования (11) для этих двух случаев.

Уравнение фильтрования при

                                Vф2+ 2Vф = 2                                 (15)

или

                                     Vф2+2                                  (16)

Отсюда количество фильтрата

                                 Vф   =                                  (17)

или

 

                                   Vф=,                       (18)

                  

а также время фильтрования                                                            

                         t=           (19)или через толщину слоя осадка:                           (20)При использовании констант Xm   и   rm   (19)  и  (20)  следует записать как:                                                              (21)                                                      (22)Скорость фильтрования в любой момент времени, соответствующая объему фильтрата Vф или, что то же самое, толщине образовавшегося слоя осадка H, определяется по уравнению, получаемому дифференцированием (15):

                                                                       (23)или      

                         

                        wф=                                                                                    (24)

                        Поправка: в знаменателе уравнения 24 вместо движущей силы следует подставлять R ф.п.

3.1 Расчет процесса фильтрации

Толщину слоя осадка принимаем на основе следующей рекомендации:

- для рамных фильтр-прессов при полном заполнении рам осадком толщина слоя осадка при фильтровании определяется как половина толщины рамы (табл.4) а при промывке равна толщине. Н = 45 мм или 0,045 м

Вычисляем продолжительность фильтрования по уравнению (19). При этом величины  Х0 и Хm  определяют по формулам (13) , (14).            Х 0  = , 

                 Х m =       

Количество фильтрата: м3

                                            

          Рассчитываем конечную скорость фильтрования wф , т.е. скорость в конце процесса, в момент достижения заданной толщины слоя H, по уравнению (24):

       wф=                                                                                   

Рассчитываем постоянную скорость промывки осадка толщиной слоя  H при движущей силе Рпр, которая в частном случае может быть равна движущей силе процесса фильтрования:Определяем полный расход промывной жидкости в цикле процесса фильтрования как Vпр = vпрS H =724,9∙16∙0,045∙1594,75=832344,7м3/кггде  vпр – удельный расход промывной жидкости, определяемый из опыта или заранее задаваемый,  рассчитывается по формуле (7) по заданной влажности осадка (рассчитана выше).

Определяем продолжительность стадии промывки осадка как Определяем продолжительность одного полного цикла фильтрования ц. Она складывается из промежутков времени, затрачиваемого на основные и вспомогательные операции:Время проведения операции подсушки осадка определяется экспериментально и в первом приближении  может быть принято равным 60 – 180 с. Время , затрачиваемое на проведение вспомогательных операций, зависит только от конструкции фильтра, его размеров и определяется на основании существующих производственных нормативов. Для рассматриваемого здесь фильтра, можно ориентировочно принять равным 1800 – 3600 с.

          Вычисляем объем фильтрата, получаемого за один полный цикл фильтрования с 1 м2 поверхности фильтра по уравнению (10) как V1ф.ц. = Н/Х0   = 0,045/0,156 = 0,29 с. Находим среднюю скорость фильтрования за один полный цикл:                                    Требуемая  поверхность фильтрования равна                                     где к – поправочный коэффициент, учитывающий  увеличение гидравлического сопротивления фильтрующей перегородки при многократном ее использовании (к = 0,8).

          По данным расчетам выбираем рамный фильтр-пресс ФI  м16-630/45У в количестве 5 штук, так как Sрасч/S = 67,5/16 = 4,2. Поверхность фильтра 16 м2.4 Тип  и конструктивные особенности аппарата для фильтрования

(рамный фильтр-пресс)      Фильтрация –  один из наиболее универсальных методов разделения твердой и жидкой фаз,  позволяющий вести процессы в широком диапазоне степеней разделения  и  степеней дисперсности твердых материалов. Это обусловило ее широкое использование в процессах рекуперации воды и водных растворов. Аппаратурное оформление процессов фильтрации отличается большим разнообразием, начиная от грубых фильтров для отделения крупных фракций и до мембранных аппаратов, позволяющих получать деионизированную воду. Ниже рассматриваем конструктивные особенности рамного фильтр-пресса, поскольку он большее других отвечает тем требованиям которые заданы манн.

Рамные фильтр-прессы.

Фильтр-пресс, фильтр периодического действия, работающий под давлением. Фильтр-прессы применяют большей частью для осветления суспензий с малым количеством взвесей. К ним относят камерные и рамные фильтр-прессы и камерные автоматические фильтр-прессы. Камерный фильтр-пресс состоит из набора плит, а рамный — из чередующихся плит и рам, сжатых между концевыми плитами. В рамном фильтр-прессе рамы служат приемной камерой для суспензии, а рифленые поверхности плит — упором фильтровальной перегородки и дренажной системой отвода фильтрата. В приливах рам и плит имеются отверстия, которые после сборки фильтровального пакета образуют каналы (коллекторы) для отвода суспензий, сжатого воздуха, пара, промывной жидкости и фильтрата. Суспензия по коллектору через щелевидные отверстия поступает в пространство рам или камер. Жидкая фаза суспензии под давлением проходит через фильтровальные перегородки в дренажные желобки плит и при открытом отводе фильтрата сливается в поддон, а при закрытом — отводится по коллектору. Суспензия на фильтр-прессы подается насосом. В зависимости от назначения фильтр-прессов выгрузку осадка производят вручную, стряхивая, смывая струей воды или счищая его лопаткой. Зажимы фильтровального пакета бывают 3 типов: ручные, электромеханические и гидравлические. Ручные зажимы состоят из винта со штурвальной рукояткой и храпового механизма. Автоматические фильтр-прессы периодического действия ФПАКМ, ФАМО, ФПАВ состоят из набора горизонтально расположенных фильтровальных плит, подъем и уплотнение которых осуществляется механизмом зажима. Фильтровальная ткань (перегородка) в виде бесконечной ленты зигзагообразно протянута между плитами. Передвижение фильтровальной ткани с целью выгрузки осадка осуществляется приводом передвижки. Промывка ткани происходит в камере регенерации.  Недостатками являются ручное обслуживание, неполнота промывки, быстрый износ ткани (табл.3).                                                                                                                                        Таблица 3

Краткая техническая характеристика рамных фильтр-прессов

№ п/п Типоразмер

Фильтра

Поверхность

Ф-я S, м2

Допустимое

давл.

DР *105 Па

Толщина рамы   мм Количество

рам

Габаритные

Размеры, мм

1 ФI

р2–15/45У

2 10 45 10 1750-1000-1645
2 ФII

р4-315/45К

4 10 45 20 2400-1000-1645
3 ФI

м16-630/45У

16 8 45 20 3940-1270-1280
4 ФII

м22-630/25К

22 8 25 28 3940-1270-1280
5 ФI

м30-740/45Д

30 4 45 30 4790-1400-1440
6 ФII

м40-820/45К

40 6 45 30 4090-1495-1430
7 ФI

м50-820\45К

50 6 45 38 4640-1495-1430
8 ФII

м56-910\45Д

56 3 45 36 53401630-1640
9 ФI

м63-820/45К

63 6 45 46 5240-1495-1430
10 ФII

м80-820/25К

80 6 25 60 4990-1495-1430
11 ФI

м100-1000/45К

100 4 45 50 5240-1700-1605
12 ФII

м140-1000/25К

140 4 25 68 5015-1700-1605
13 ФI

г140-1000/ 25К

140 4 25 68 5915-1700-1605
14 ФII

г112 –1000/25К

112 4 25 56 5315-1700-1605
  

     Условные обозначения типоразмера фильтра: Ф – фильтрпресс; I - с открытым отводом фильтрата; II - с закрытым отводом фильтрата; р – с ручным зажимом; м – с электромеханическим зажимом; г – с гидравлическим зажимом; число за буквами – поверхность фильтрования, м2; числитель – размер рам в свету, мм; знаменатель – толщина рам, мм; У,К,Д –  материал деталей, соприкасающихся с обрабатываемым продуктом ( углеродистая сталь, коррозионностойкая сталь, Д – из дерева).                                                                                                                                Таблица 4

Рекомендации по применению фильтров периодического действия

(при условии промывки осадков)

Концентра-

ция суспен-

зии, кгм3

Размер час-

тиц твердой

фазы, мкм

Емкостные фильтры Фильтр-прессы Листовые

Фильтры

Под

давлением

Под

вакуумом

Рамные ФПАКМ
,5  -  5 < 10 3/2 3/2 2/- 2/- -/3
-«- 10  -  100 3/1 3/1 2/- 2/- -/3
5  -  50 <  10 3/2 3/3 2/- 2/- -/3
-«- 10  -  100 2/1 2/1 1/- 2/- -/3
-«- 100 – 1000 2/1 2/1 1/- 2/- -/3
0  -  150 < 10 3/2 3/2 1/- 2/- -/3
-«- 10  - 100 2/1 2/1 1/- 2/- -/3
-«- 100 – 1000 2/1 2/1 1/- 2/- -/3
150 – 500 < 10 3/2 3/2 2/- 2/- -
-«- 10 – 100 2/2 2/1 2/- 2/- -
-«- 100 – 1000 2/1 2/1 2/- 2/- -
       Условные обозначения: 1 – пригоден в большинстве случаев;  2 – пригоден при соответствующих свойствах суспензии и осадка;  3 -  желательно использовать другой тип фильтра;  прочерк – применение исключено;  числитель – механическое,  знаменатель – гидравлическое удаление осадка.Использованная литература1. Жужиков В.А. Фильтрование. Теория и практика. М. : Химия,  1971. – 440 с.

2. Фильтры для жидкостей. Каталог. М. : ЦИНТИ химнефтемаш, 1974. – 246 с.

bukvasha.ru

Реферат: Электрические фильтры

Электрические фильтры.

   Электрическими частотными фильтрами называются четырехполюсники, ослабление которых в некоторой полосе частот мало, а в другой полосе частот -- велико. Диапазон частот, в котором ослабление мало, называется полосой пропускания, а диапазон частот, в котором ослабление велико -- полосой задерживания. Между этими полосами часто вводят полосу перехода.

   Фильтры могут быть пассивными, состоящими из индуктивностей и емкостей (пассивные LC-фильтры), пассивными, состоящими из сопротивлений и емкостей (пассивные RC-фильтры), активными (ARC-фильтры), кварцевыми, магнитстрикционными, с переключающими конденсаторами, цифровыми (с использованием ЭВМ) и некоторыми другими. Фильтры LC имеют широкое распространение, но в настоящее время интенсивно вытесняются ARC-фильтрами. Чрезвычайно перспективными являются фильтры с переключающими конденсаторами (AC-фильтры). Кварцевые фильтры обеспецивают очень большие добротности (до десятков тысяч) на высоких частотах, а магнитострикционные--на низких.

                 Фильтры с характеристиками Баттерворта, Чебышева, Золотарева.

   При синтезировании фильтров широкое распространение получили фильтры с характеристиками, названными именами крупных ученых, чьи труды использовались при разработке данных фильтров -- Баттерворта, Чебышева, Золотарева (С.Баттерворт -- инженер-электрик, исследовавший фильтры в 30-х годах прошлого (ХХ) века, П. Л. Чебышев (1821-1894) и Е. И. Золотарев (1847-1878) -- крупные математики, академики Петербургской академии наук).

   Фильтрами с характеристиками Баттерворта называют фильтры, у которых в ФНЧ при нулевой частоте ослабление = 0, в полосе пропускания оно монотонно увеличивается, на граничной частоте достигает 3 дБ, а затем в полосе задержки постепенно возрастает. Чем больше звеньев имеет фильтр, т. е. чем выше его порядок, тем круче идет характеристика в полосе задержки и тем меньше ослабление в полосе пропускания. При этом следует иметь в виду, что элементы фильтра считают чисто реактивными. При наличии потерь характеристики искажаются  и отличаются от рассматриваемых.

   Фильтрами Чебышева называют фильтры, у которых характеристика ослабления в полосе пропускания имеет колебательный характер с амплитудой, не превышающей 3 дБ, а в полосе задерживания -- монотонно возрастающей, с крутизной, большей, чем у фильтра Баттерворта такого же порядка. Чем больше амплитуда ослабления в полосе пропускания, тем круче идет характеристика в полосе задерживания  и наоборот, чем меньше амплитуда колебания в полосе пропускания, тем меньше крутизна характеристики в полосе задерживания.

   Характеристика фильтра Золотарева имеет в полосе пропускания колебательный характер, а в полосе задерживания -- немонотонный, с характерными всплесками.

 

                           Кварцевые фильтры.

   В реальных условиях добротности катушек составляют десятки, иногда сотни, но для получения требуемых харктеристик в ряде случаев  необходимы добротности значительно большие, прежде всего в полосовых фильтрах с узкой полосой пропускания. Для таких целей используют кварцевые фильтры.

   Кварцевые фильтры работают по следующему принципу: в пластинке, вырезанной из природного материала -- кварца, обнаруживаются прямой и обратный пьезоэлектрический эффекты, состоящие в том, что при сжатии и растяжении пластинки, на одной ее поверхности появляется положительный заряд, а на другой -- отрицательный. Если же покрыть две грани пластинки металлом и приложить к ним переменое напряжение, то пластинка станет сжиматься и растягиваться, т. е. получаются механические колебания. Это называется обратным пьезоэлектрическим эффектом. Как всякая колебательная система, кварцевая пластинка имеет собственную частоту колебаний, которая зависит от её геометрических размеров. Собственная частота кварцевой пластинки при толщине 1 мм составляет единицы мегагерц.

 

 

                              Магнитострикционные фильтры.

   Колебательные системы могут быть как электрическими, так и механическими. Например, камертон, натянутая струна и тому подобные устройства являются типично колебательными системами. По принципу успользования колебательных свойств подобных деталей разработаны и используются в технике связи электромеханические фильтры, добротности которых весьма высокие -- порядка единиц тысяч. Принцип действия этих фильтров состоит в следующем. Оказалось, что некоторые материалы, например никель, феррит и другие, обладают свойствами изменять свою длинну при изменении магнитного поля, в котором они находятся. Подобный эффект называют магнитострикционным. Он используется в электромеханических магнитострикционных фильтрах, состоящих из жестко закреплённого никелевого или ферритового стержня длинной в несколько сантиметров. На стержне находится катушка с индуктивностью порядка десятка микрогенри и постоянный магнит. При протекании по катушке переменного тока магнитное поле изменяется, что приводит к изменению длинны стержней и их резонансным частотам.

   Подобные фильтры называют также магнитострикционными резонаторами. В таких фильтрах W2/W3 = 1,01 -- 1,10, что соответствует добротностям 2000...4000 и во много раз превышает добротности, которые можно получить в LC-фильтрах.

                                                               

  Линии задержки.

   В любой цепи, содержащей накопители энергии, максимальные значения мгновенных выходных напряжений сдвинуты по времени относительно аналогчных максимальных входных напряжений. Например в нижеприведенной схеме выходное напряжение отстает по фазе от входного, из-за чего между этими напряжениями образуется сдвиг во времени. Такое время задержки называют групповым.

   Следует отметить, что с повышением частоты время задержки сокращается т. к. ёмкость является частотозависимым элементом.

 

 

                            Активные фильтры.

   Фильтры класса ARC называются активными. На практике наибольшее распространение получили фильтры, у которых в качестве активных элементов используются операционные усилители.

 

 

             Цепи с переключающими конденсаторами.

   Современная микроэлектроника позволяет изготавливать на одном кристалле и за один технологический цикл электронные устройства, содержащие большое число элементов -- резисторов, конденсаторов, транзисторов, ОУ и т. д.. Однако объем, занимаемый резистором, значительно (иногда до 100 раз) превышает объем, занимаемый конденсатором, причем с увеличением сопротивления резистора увеличиваются его размеры. Таким образом оказалась чрезвычайно перспективной идея -- заменить резисторы некоторой, пусть даже многоэлементной схемой, но не содержащей резистивных элементов. 

Такая замена весьма существенна также и потому, что уменьшение числа резисторов снижает потребляемую мощность и выделение тепла в микросхеме.

   Рассмотрим такую замену на схемах 1 и 2.

 

Пусть имеется схема 1, если U1 > U2, то по цепи потечет ток от точки а к точке в. Заменим теперь схему 1 схемой 2. переключатель К в некоторый момент переведём из положения 2 в положение 1. Поскольку напряжение на конденсаторе отлично от напряжения U1, конденсатор станет заряжаться  и в ветви первого источника потечет ток, также, как он протекал в схеме 1. После переключения ключа в положение 2, конденсатор станет разряжаться и в проводнике в окажется ток. Эти переключения производят с достаточно большой частотой, которую называют тактовой. В качестве переключателя используют специальное электронное устройство, не содержащее резисторов.

 

          Цифровые фильтры.

   Цифровые фильтры (эквалайзеры) получили широкое распространение благодаря интенсивному развитию ЭВМ.

Возможности таких эквалайзеров практически неограничены (зависит от сложности программы). При обработке цифровым эквалайзером есть возможность установить добротность до 10000,

коэффициент усиления на определенной частоте может достигать 50 дБ, а ослабления -- до отрицательной бесконечности (полного подавления частоты), чего никогда не удастся получить на аналоговых фильтрах! Цифровые эквалайзеры не дают фазовых сдвигов частот, хотя если надо это симитировать, то подобное не проблема. Цифровые эквалайзеры никогда не добавят шум в сигнал, т. к. обрабатывается оцифрованный сигнал и качество этой обработки зависит от сложности алгоритма, частоты дискретизации и битности.

 

www.referatmix.ru

Реферат на тему Очистка воды – системы очистки воды, фильтры для воды, водоподготовка

Московская медицинская академия им. И.М. Сеченова.

Кафедра общей гигиены.

Реферат на тему:

«Очистка воды – системы очистки воды, фильтры для воды, водоподготовка.»

Исполнитель: Линок А.В.

Студент 3 курса МПФ

5 группы

Преподаватель: Бирюкова Н.А.

Москва 2007 год.

План:

  1. Вступление

  2. Гигиеническая характеристика источников водоснабжения

  3. Очистка воды от железа

  4. Очистка воды от солей жесткости

  5. Очистка воды обеззараживанием

Введение.

Проблема качества питьевой воды затрагивает многие стороны жизни человеческого общества. Словосочетание "питьевая вода" появилось относительно недавно и, несмотря на это, уже превратилось в термин, который встречается в законах и правовых актах, посвященных питьевому водоснабжению. В настоящее время питьевая вода - это проблема социальная, политическая, медицинская, географическая, инженерная, экономическая.

Питьевая вода - вода, отвечающая по своему качеству в естественном состоянии или после обработки (очистки воды, обеззараживания) установленным нормативным требованиям и предназначенная для питьевых и бытовых нужд человека, либо для производства пищевой продукции.

В последние десятилетия в результате интенсивного антропогенного воздействия качественно изменился химический состав не только поверхностных, но и подземных вод. Даже на бытовом уровне человек сталкивается с такими проблемами как:

-вода имеет неприятный запах и привкус;

-вода мутная или желтого цвета;

-водонагревательные приборы покрыты густым желтым или белым налетом;

-при использовании воды возникает зуд на кожных покровах.

Для того, чтобы устранить подобные проблемы или свести их к минимуму необходима качественная очистка воды. Прежде чем приступать к системе очистки воды необходимо сделать ее анализ. По результатам анализа оценивается состав воды по технологическим и токсикологическим показателям и выдаются рекомендации по корректировке состава воды с учетом концентрации компонентов и технологии очистки.

Очистка воды – технологические процессы, применяемые для осветления и обесцвечивания воды.

Водоподготовка – технологические процессы обработки природной воды для приведения ее качкства в соответствие с требованиями водопотребителей. Водоподготовка включает следующие стадии: осветление воды, обеззараживание воды, обезжелезивание воды, умягчение воды, озонирование воды, деминерализация воды, дегазация воды, добавление некоторых компонентов: фторирование и пр.

Гигиеническая характеристика источников водоснабжения

Пресную воду можно получать из трёх природных водоисточников: атмосферных осадков, открытых водоёмов и подземных вод. Эти источники значительно различаются как по количеству получаемой из них воды (дебиту), так и по качественному её составу.

Вода, собираемая из атмосферных осадков (дождевая, снеговая), отличается очень низкой степенью минерализации и приближается к дистиллированной; поэтому она рекомендуется для хозяйственных и технических нужд. Мыло хорошо растворяется и пенится в такой воде, при её использовании в нагревательных котлах образуется мало накипи. Однако низкое содержание минеральных солей не даёт возможности систематически использовать эту воду для питья. При длительном употреблении такой воды возникают желудочно-кишечные расстройства в силу нарушения осмотического давления в кишечнике. Постоянное употребление такой воды может вызвать и различные нарушения обменных процессов в организме, так как вода обычно является поставщиком многих необходимых организму химических элементов, которые в атмосферных водах отсутствуют. Кроме того, использование атмосферных осадков в качестве постоянного источника водоснабжения чрезвычайно затруднено из-за непостоянства дебита воды. Невозможно заранее предугадать, когда и в каком количестве выпадут атмосферные осадки. Использование атмосферных осадков в качестве источника водоснабжения осложняется из-за громоздкости сооружений для сбора воды: чтобы собрать большое количество атмосферной воды, требуется сооружение водосборников, имеющих очень большую горизонтальную поверхность.

Степень чистоты атмосферных осадков может резко меняться в зависимости от состояния атмосферы, степени загрязнённости воздуха в той местности, где выпадают осадки, силы и направления ветра, длительности выпадения осадков, их интенсивности и других факторов. Известны случаи, когда атмосферные осадки содержали значительное количество всевозможных загрязнений, которые были подняты в воздух с земли вихревыми потоками или в результате извержения вулканической пыли (так называемые кровавые дожди, содержащие примеси красной породы и пр.). Как правило, первые порции воды, выпадающей в виде атмосферных осадков, больше загрязнены по сравнению с последующими. Наиболее чистыми являются последние порции. Естественно, что микробная загрязнённость атмосферных осадков также непостоянна и зависит от перечисленных факторов. Следует учитывать, что чистота собираемой атмосферной воды зависит также от состояния водосборников и резервуаров для хранения: степень их загрязнения при длительных перерывах между выпадением осадков может быть значительной. В связи с изложенным воду из атмосферных осадков в обычных условиях используют лишь эпизодически для хозяйственных нужд (стирка, мытьё). Целесообразно использование этой воды для технических надобностей. Однако в местностях, где получение пресной воды из других источников затруднено, необходимо максимально использовать все возможности для сбора и сохранения воды из атмосферных осадков. Для питья такую воду можно использовать только после обеззараживания. Из методов обеззараживания при централизованном сборе воды и водоснабжении наиболее доступно хлорирование, причём необходимую дозу хлора нужно устанавливать после каждого сбора воды. В индивидуальном хозяйстве такую воду следует употреблять после кипячения. Необходимо также помнить, что при длительном использовании атмосферной воды для питья в неё необходимо добавлять определённое количество минеральных солей. Состав и количество минерально-солевых смесей для этих целей регламентированы техническими условиями. Комплекты этих солей выпускаются промышленностью.

Вторая группа источников водоснабжения - открытые водоёмы (ручьи, реки, озёра, пруды и др.) - отличается более постоянным дебитом воды и средней степенью минерализации, что позволяет с успехом использовать воду из этих источников как для хозяйственных и технических, так и для питьевых целей.

Однако открытые водоёмы, как правило, подвержены значительному загрязнению извне (пылью из воздуха, непосредственно людьми и животными и особенно разнообразными стоками с поверхности почвы). Поэтому вода из открытых источников может использоваться в питьевых целях только после специальной обработки (очистки и обеззараживания). Необходимость предварительной обработки воды, получаемой из открытых водоёмов, затрудняет использование её в индивидуальном порядке. Поэтому открытые водоёмы обычно служат источником централизованного водоснабжения, что даёт возможность провести централизованную обработку воды и тем самым в значительной степени гарантировать население от возникновения инфекционных заболеваний, распространяющихся через воду.

Как количество воды в открытых водоёмах, так и степень её минерализации и загрязнённости подвержены значительным колебаниям. После выпадения осадков степень минерализации воды в водоёмах снижается, количество её (а, следовательно, дебит источника) увеличивается; при этом резко возрастает загрязнённость воды в результате обильных стоков в водоём с поверхности земли. При длительном отсутствии осадков уменьшается количество воды, увеличивается степень её минерализации в результате испарения и впитывания в почву, снижается загрязнённость благодаря процессам самоочищения, которые постоянно протекают в водоёмах (естественное отстаивание, окисление и минерализация органических веществ и т.д.). Однако по сравнению с атмосферными водами как количественные, так и качественные показатели воды меньше подвержены колебаниям. В водохранилищах, устраиваемых для централизованного водоснабжения крупных населённых мест, свойства воды благодаря её большому количеству меняются в зависимости от выпадения атмосферных осадков ещё меньше.

В некоторых случаях население всё же пользуется водой из открытых водоёмов в индивидуальном порядке. Такая вода загрязнена, опасна в эпидемиологическом отношении и её употребление для питья, мытья посуды и т.д. без обработки может явиться причиной возникновения и распространения желудочно-кишечных инфекций и инвазий.

Подземные воды вытекают на поверхность естественным путём (родники) либо их добывают посредством сооружения различного рода колодцев.

Подземные воды располагаются послойно, пропитывая рыхлые (водоносные) породы земли, которые располагаются между водоупорными слоями, состоящими из плотных пород (глина, камень, известняк).

Просачиваясь через слои земных пород, вода постепенно очищается от взвешенных в ней частиц, в том числе и от микроорганизмов, и растворяет содержащиеся в породах минеральные соли. Поэтому такая вода содержит очень мало взвешенных примесей, т.е. является наиболее чистой по сравнению с водой, получаемых из других источников, но отличается более высокой степенью минерализации. Подземные источники характеризуются также большим постоянством дебита воды, что даёт возможность довольно точно планировать водоснабжение.

Атмосферные осадки оказывают значительно меньшее влияние на количество и свойства воды в подземных источниках по сравнению с открытыми водоёмами, причём степень изменения свойств воды в подземных источниках зависит от глубины залегания водоносного слоя.

В первом, наиболее поверхностном, водоносном слое вода, как правило, ещё значительно загрязнена, и поэтому без специальной обработки пользоваться ею для питья не рекомендуется. Количество и свойства воды в этом слое могут значительно изменяться при выпадении атмосферных осадков. Вода из средних слоёв (второго, третьего) довольно чистая и характеризуется средней степенью минерализации. Поэтому её можно использовать как в качестве питьевой, так и для хозяйственных нужд (плохо моет, образует большое количество накипи и т.д.). Для питья такую воду можно использовать, так как количество взвешенных примесей и микроорганизмов в ней незначительно.

Подземные воды, за исключением самых поверхностных (из первого водоносного слоя), при правильном устройстве и содержании водозаборных сооружений, как правило, могут быть использованы для питья без дополнительной обработки. Они обладают хорошими органолептическими и физико-химическими свойствами, содержат незначительное количество микроорганизмов, среди которых патогенные обычно не обнаруживаются.

Поскольку добыча большого количества воды из подземных источников является делом дорогостоящим и затруднительным, для централизованного снабжения водой крупных населённых пунктов обычно используют открытые водоёмы. В таких случаях на водопроводных станциях перед подачей воды в сеть производят специальную её обработку. Обработку воды необходимо производить также при временном водоснабжении в полевых условиях и в любых других случаях, когда нельзя гарантировать чистоту и безопасность потребляемой воды.

Наиболее распространённые методы обработки воды - очистка (освобождение от взвешенных частиц) и обеззараживание (уничтожение патогенной микрофлоры).

Очистка воды чаще всего производится путём отстаивания её и фильтрации через песчаные фильтры.

Принцип отстаивания заключается в значительном замедлении тока воды и выпадении взвешенных частиц в осадок. Поскольку само по себе отстаивание является малоэффективным методом, оно применяется обычно в сочетании с другими (коагуляцией и фильтрацией).

Фильтрация воды может быть проведена путём применения скорых или медленных песчаных фильтров (реже применяются специальные виды фильтрации).

Принцип устройства песчаных фильтров примерно одинаков: на поддерживающем решётчатом основании размещаются крупнозернистые слои фильтра (гравий), которые, в свою очередь, являются поддерживающими слоями для песка. Собственно фильтрующий слой промытого мелкозернистого песка толщиной около 1,5-2 метра. Фильтрация через такой фильтр неполностью обеспечивает задержку всех взвешенных частиц, наиболее мелкие частицы и значительное количество микроорганизмов могут проходить через него. Для повышения эффективности скорых фильтров воду перед пропусканием через них предварительно подвергают коагуляции.

Метод коагуляции заключается в том, что при добавлении в воду раствора коагулянта последний вступает в соединение с двууглекислыми солями, растворёнными в воде, в результате чего образуется нерастворимое соединение, выпадающее в осадок. Этот осадок в виде студенистых хлопьев выпадает во всём объёме воды и имеет электрический заряд, противоположный по знаку заряду взвешенных в воде механических примесей. Выпадающие в осадок хлопья коагулянта в силу противоположности электрических зарядов сорбируют на себе мельчайшие частицы загрязнений, в результате чего последние укрупняются, лучше оседают при отстаивании и хорошо задерживаются при последующей фильтрации. В качестве коагулянта наиболее часто используют сернокислый алюминий Al2(SO4)3, который при реагировании с солями, растворёнными в воде, образует нерастворимые хлопья гидрата окиси алюминия Al(OH)3.

Применение коагулянта перед фильтрацией воды через скорые фильтры приводит к тому, что поры фильтрующего слоя песка быстро забиваются и скорость фильтрации резко падает. Поэтому эксплуатация скорых фильтров предусматривает их периодическую промывку, которая производится посредством обратного тока воды. При этом напор промывающей воды регулируют таким образом, чтобы верхний, фильтрующий, слой песка взмучивался. В результате промывки загрязнения, приставшие к песчинкам фильтра, отмываются и уносятся с промывными водами. После прекращения промывки отмытый песок вновь оседает на поддерживающие слои гравия, и фильтрация может быть возобновлена. Периодичность промывки фильтров 12-24 часов.

При фильтрации через медленные фильтры предварительную коагуляцию не производят, а воду, полученную после фильтрации, в течение нескольких дней после ввода фильтра в действие не используют. На поверхности фильтра через несколько дней эксплуатации оседают взвешенные в воде животные и растительные организмы (биопланктон), которые образуют в поверхностном слое фильтра так называемую биологическую плёнку. Эта плёнка имеет мелкопористую структуру и обладает сильными сорбирующими свойствами. Скорость тока воды через фильтры, покрытые плёнкой, весьма невелика (10-20 см/ч), а эффективность задержки загрязнений значительна. Несмотря на отсутствие предварительной коагуляции, при фильтрации воды через медленные фильтры на них задерживаются самые мелкие коллоидные частицы и даже бактерии. Очистка воды достигает высокой степени.

Как правило, после фильтрации через медленные фильтры последующего обеззараживания воды не требуется. Уход за медленными фильтрами заключается в периодическом удалении поверхностного слоя песка вместе с биологической плёнкой. Простота устройства и обслуживания медленных фильтров (исключение процесса коагуляции воды и последующего обеззараживания, отсутствие специальных приспособлений для промывки фильтра и др.) создаёт возможности для сооружения их в местах, где затруднено техническое обслуживание водопроводов, а водопотребление невелико (в сельской местности).

На практике медленные фильтры в настоящее время используются редко, так как небольшое количество воды, необходимое для снабжения населения в мелких населённых пунктах, удаётся обычно получить из подземных источников, а такая вода не требует специальной обработки. В крупных же населённых пунктах с большим водопотреблением медленные фильтры нельзя использовать из-за их низкой производительности. Полезно помнить, что при необходимости длительного использования воды из открытых водоёмов, требующей специальной обработки, можно устроить простые и надёжные очистные сооружения - медленные фильтры.

В случае необходимости очистки воды во временных, полевых условиях можно осуществлять фильтрацию загрязнённой воды через самодельные фильтры. Такой фильтр лучше всего сооружать из деревянной бочки с одним дном или другой подобной ёмкости. В её дне просверливают несколько дырок и ставят над водосборником. Внутрь бочки на дно кладут хорошо выстиранную грубую ткань (мешковину), а затем насыпают промытый речной песок. Пропускаемая через такой фильтр вода будет в значительной степени очищаться взвешенной мути. Однако следует иметь в виду, что такая очистка является лишь подсобным методом обработки воды и после неё воду необходимо обеззараживать.

Если есть возможность выбирать водоисточник для питьевого водоснабжения, необходимо всегда отдавать предпочтение подземным водам, подвергшимся естественной фильтрации, и только при невозможности получения такой воды следует использовать другие источники при условии обязательной обработки полученной из них воды.

Очистка воды от железа

Наличие железа можно определить и на вкус. Начиная с концентрации 1,0-1,5 мг/л вода имеет характерный неприятный металлический привкус. Игнорирование проблемы железа в воде оканчивается плохо и стоит дорого: потеря «белизны» ванн, отказы в работе импортной бытовой техники, систем отопления и нагрева воды. Уже при концентрации 0,5 мг/л идет интенсивное появление хлопьев, образующих рыхлый шлам, который забивает теплообменники, радиаторы, трубопроводы, сужает их проходное сечение. Что уж тут говорить о вреде для здоровья человека!

Решение проблемы очистки воды от железа представляется довольно сложной и комплексной задачей. К наиболее часто используемым методам можно отнести:

-Аэрирование – окисление кислородом воздуха с последующим осаждением и фильтрацией. Расход воздуха для насыщения воды кислородом составляет около 30 л/м3. Это традиционный метод, применяемый уже много десятилетий. Реакция окисления железа требует довольно длительного времени и больших резервуаров, поэтому этот способ используется только на крупных муниципальных системах.

-Каталитическое окисление с последующей фильтрацией. Наиболее распространенный на сегодняшний день метод удаления железа, применяемый в высокопроизводительных компактных системах. Суть метода заключается в том, что реакция окисления железа происходит на поверхности гранул специальной фильтрующей среды, обладающей свойствами катализатора (ускорителя химической реакции окисления). Наибольшее распространение в современной водоподготовке нашли фильтрующие среды на основе диоксида марганца (MnO2). Железо в присутствии диоксида марганца быстро окисляется и оседает на поверхности гранул фильтрующей среды. Впоследствии большая часть окисленного железа вымывается в дренаж при обратной промывке. Таким образом, слой гранулированного катализатора является одновременно и фильтрующей средой. Для улучшения процесса окисления в воду могут добавляться дополнительные химические окислители.

Все системы на основе каталитического окисления с помощью диоксида марганца имеют большой удельный вес и требуют больших расходов воды при обратной промывке. Тем не менее, именно применение этого метода представляется наиболее перспективным направлением в деле борьбы с железом и марганцем в воде.

Очистка воды от солей жесткости

С жесткой водой сталкивался каждый, достаточно вспомнить о накипи в чайнике. Жесткая вода не годится при окрашивании тканей водорастворимыми красками, в пивоварении, производстве водки. В ней хуже пенится стиральный порошок и мыло. Высокая жесткость воды делает её непригодной и для питания газовых и электрических паровых котлов и бойлеров. Слой накипи в 1,5 мм снижает теплоотдачу на 15%, а слой толщиной 10 мм – уже на 50%. Снижение теплоотдачи ведет к увеличению расхода топлива или электроэнергии, что, в свою очередь, ведет к образованию прогаров, трещин на трубах и стенках котлов, выводя преждевременно из строя системы отопления и горячего водоснабжения.

Наиболее эффективным способом борьбы с высокой жесткостью является применение автоматических фильтров – умягчителей. В основе их работы лежит ионообменный процесс, при котором растворенные в воде жесткие соли заменяются на мягкие, которые не образуют твердых отложений.

Автоматический умягчитель представляет собой пластиковый корпус с управляющим блоком (клапаном) и баком для приготовления и хранения регенерирующего раствора. Жесткая вода, поступая в фильтр, проходит через слой засыпки из высококачественной ионообменной смолы. При этом происходит изменение химического состава растворенных солей за счет замены ионов кальция и магния на ионы натрия, которые химически связаны со смолой. Когда поглощающая способность смолы снижается до определенного уровня, блок управления автоматически начинает цикл регенерации. Восстановление свойств ионообменной смолы осуществляется при подаче в фильтр водного раствора высокоочищенной поваренной соли (NaCl) за счет обратного замещения накопленных в смоле ионов кальция и магния на ионы натрия. Затем все загрязнения вымываются из фильтра в дренаж, а смола, обогащенная натрием, становится вновь готовой к работе.

Современные синтетические смолы чрезвычайно надежны и долговечны, позволяют работать на высоких скоростях потоков, благодаря чему находят применение в системах с высокой производительностью. Срок службы смолы может достигать 6-8 лет в зависимости от качества исходной воды. В настоящее время благодаря большому разнообразию смол фильтры-умягчители могут быть использованы также для удаления из воды железа и марганца, тяжелых металлов, органических соединений.

Очистка воды обеззараживанием

Обеззараживание воды (удаление бактерий, спор, микробов и вирусов) является заключительным этапом подготовки воды питьевой кондиции. Использование для питья подземной и поверхностной воды в большинстве случаев невозможно без обеззараживания. Обычными методами при очистке воды являются:

- Хлорирование путем добавления хлора, диоксида хлора, гипохлорита натрия или кальция.

- Озонирование. При применении озона для подготовки питьевой воды используются окислительные и дезинфицирующие свойства озона.

Ультрафиолетовое облучение. Используется энергия ультрафиолетового излучения для уничтожения микробиологических загрязнений. Кишечная палочка, бацилла дизентерии, возбудители холеры и тифа, вирусы гепатита и гриппа, сальмонелла погибают при дозе облучения менее 10 мДж/см2, а ультрафиолетовые стерилизаторы обеспечивают дозу облучения не менее 30 мДж/см2.

studfiles.net

Реферат Электрические фильтры

Электрические фильтры.

   Электрическими частотными фильтрами называются четырехполюсники, ослабление которых в некоторой полосе частот мало, а в другой полосе частот -- велико. Диапазон частот, в котором ослабление мало, называется полосой пропускания, а диапазон частот, в котором ослабление велико -- полосой задерживания. Между этими полосами часто вводят полосу перехода.

   Фильтры могут быть пассивными, состоящими из индуктивностей и емкостей (пассивные LC-фильтры), пассивными, состоящими из сопротивлений и емкостей (пассивные RC-фильтры), активными (ARC-фильтры), кварцевыми, магнитстрикционными, с переключающими конденсаторами, цифровыми (с использованием ЭВМ) и некоторыми другими. Фильтры LC имеют широкое распространение, но в настоящее время интенсивно вытесняются ARC-фильтрами. Чрезвычайно перспективными являются фильтры с переключающими конденсаторами (AC-фильтры). Кварцевые фильтры обеспецивают очень большие добротности (до десятков тысяч) на высоких частотах, а магнитострикционные--на низких.

                 Фильтры с характеристиками Баттерворта, Чебышева, Золотарева.

   При синтезировании фильтров широкое распространение получили фильтры с характеристиками, названными именами крупных ученых, чьи труды использовались при разработке данных фильтров -- Баттерворта, Чебышева, Золотарева (С.Баттерворт -- инженер-электрик, исследовавший фильтры в 30-х годах прошлого (ХХ) века, П. Л. Чебышев (1821-1894) и Е. И. Золотарев (1847-1878) -- крупные математики, академики Петербургской академии наук).

   Фильтрами с характеристиками Баттерворта называют фильтры, у которых в ФНЧ при нулевой частоте ослабление = 0, в полосе пропускания оно монотонно увеличивается, на граничной частоте достигает 3 дБ, а затем в полосе задержки постепенно возрастает. Чем больше звеньев имеет фильтр, т. е. чем выше его порядок, тем круче идет характеристика в полосе задержки и тем меньше ослабление в полосе пропускания. При этом следует иметь в виду, что элементы фильтра считают чисто реактивными. При наличии потерь характеристики искажаются  и отличаются от рассматриваемых.

   Фильтрами Чебышева называют фильтры, у которых характеристика ослабления в полосе пропускания имеет колебательный характер с амплитудой, не превышающей 3 дБ, а в полосе задерживания -- монотонно возрастающей, с крутизной, большей, чем у фильтра Баттерворта такого же порядка. Чем больше амплитуда ослабления в полосе пропускания, тем круче идет характеристика в полосе задерживания  и наоборот, чем меньше амплитуда колебания в полосе пропускания, тем меньше крутизна характеристики в полосе задерживания.

   Характеристика фильтра Золотарева имеет в полосе пропускания колебательный характер, а в полосе задерживания -- немонотонный, с характерными всплесками.                           Кварцевые фильтры.

   В реальных условиях добротности катушек составляют десятки, иногда сотни, но для получения требуемых харктеристик в ряде случаев  необходимы добротности значительно большие, прежде всего в полосовых фильтрах с узкой полосой пропускания. Для таких целей используют кварцевые фильтры.

   Кварцевые фильтры работают по следующему принципу: в пластинке, вырезанной из природного материала -- кварца, обнаруживаются прямой и обратный пьезоэлектрический эффекты, состоящие в том, что при сжатии и растяжении пластинки, на одной ее поверхности появляется положительный заряд, а на другой -- отрицательный. Если же покрыть две грани пластинки металлом и приложить к ним переменое напряжение, то пластинка станет сжиматься и растягиваться, т. е. получаются механические колебания. Это называется обратным пьезоэлектрическим эффектом. Как всякая колебательная система, кварцевая пластинка имеет собственную частоту колебаний, которая зависит от её геометрических размеров. Собственная частота кварцевой пластинки при толщине 1 мм составляет единицы мегагерц.

                              Магнитострикционные фильтры.

   Колебательные системы могут быть как электрическими, так и механическими. Например, камертон, натянутая струна и тому подобные устройства являются типично колебательными системами. По принципу успользования колебательных свойств подобных деталей разработаны и используются в технике связи электромеханические фильтры, добротности которых весьма высокие -- порядка единиц тысяч. Принцип действия этих фильтров состоит в следующем. Оказалось, что некоторые материалы, например никель, феррит и другие, обладают свойствами изменять свою длинну при изменении магнитного поля, в котором они находятся. Подобный эффект называют магнитострикционным. Он используется в электромеханических магнитострикционных фильтрах, состоящих из жестко закреплённого никелевого или ферритового стержня длинной в несколько сантиметров. На стержне находится катушка с индуктивностью порядка десятка микрогенри и постоянный магнит. При протекании по катушке переменного тока магнитное поле изменяется, что приводит к изменению длинны стержней и их резонансным частотам.

   Подобные фильтры называют также магнитострикционными резонаторами. В таких фильтрах W2/W3 = 1,01 -- 1,10, что соответствует добротностям 2000...4000 и во много раз превышает добротности, которые можно получить в LC-фильтрах.

                                                               

  Линии задержки.

   В любой цепи, содержащей накопители энергии, максимальные значения мгновенных выходных напряжений сдвинуты по времени относительно аналогчных максимальных входных напряжений. Например в нижеприведенной схеме выходное напряжение отстает по фазе от входного, из-за чего между этими напряжениями образуется сдвиг во времени. Такое время задержки называют групповым.

   Следует отметить, что с повышением частоты время задержки сокращается т. к. ёмкость является частотозависимым элементом.                            Активные фильтры.

   Фильтры класса ARC называются активными. На практике наибольшее распространение получили фильтры, у которых в качестве активных элементов используются операционные усилители.              Цепи с переключающими конденсаторами.

   Современная микроэлектроника позволяет изготавливать на одном кристалле и за один технологический цикл электронные устройства, содержащие большое число элементов -- резисторов, конденсаторов, транзисторов, ОУ и т. д.. Однако объем, занимаемый резистором, значительно (иногда до 100 раз) превышает объем, занимаемый конденсатором, причем с увеличением сопротивления резистора увеличиваются его размеры. Таким образом оказалась чрезвычайно перспективной идея -- заменить резисторы некоторой, пусть даже многоэлементной схемой, но не содержащей резистивных элементов. 

Такая замена весьма существенна также и потому, что уменьшение числа резисторов снижает потребляемую мощность и выделение тепла в микросхеме.

   Рассмотрим такую замену на схемах 1 и 2.

Пусть имеется схема 1, если U1 > U2, то по цепи потечет ток от точки а к точке в. Заменим теперь схему 1 схемой 2. переключатель К в некоторый момент переведём из положения 2 в положение 1. Поскольку напряжение на конденсаторе отлично от напряжения U1, конденсатор станет заряжаться  и в ветви первого источника потечет ток, также, как он протекал в схеме 1. После переключения ключа в положение 2, конденсатор станет разряжаться и в проводнике в окажется ток. Эти переключения производят с достаточно большой частотой, которую называют тактовой. В качестве переключателя используют специальное электронное устройство, не содержащее резисторов.          Цифровые фильтры.

   Цифровые фильтры (эквалайзеры) получили широкое распространение благодаря интенсивному развитию ЭВМ.

Возможности таких эквалайзеров практически неограничены (зависит от сложности программы). При обработке цифровым эквалайзером есть возможность установить добротность до 10000,

коэффициент усиления на определенной частоте может достигать 50 дБ, а ослабления -- до отрицательной бесконечности (полного подавления частоты), чего никогда не удастся получить на аналоговых фильтрах! Цифровые эквалайзеры не дают фазовых сдвигов частот, хотя если надо это симитировать, то подобное не проблема. Цифровые эквалайзеры никогда не добавят шум в сигнал, т. к. обрабатывается оцифрованный сигнал и качество этой обработки зависит от сложности алгоритма, частоты дискретизации и битности.

bukvasha.ru

Доклад - Очистка воды на ионитных фильтрах

CЕВАСТОПОЛЬСКИЙ НАЦИОНАЛЬНЫЙ УНИВЕРСИТЕТ ЯДЕРНОЙ ЭНЕРГИИ И ПРОМЫШЛЕННОСТИ

КОНТРОЛЬНАЯ РАБОТА ПО ДИСЦИПЛИНЕ «ХИМИЯ»

Тема: «ОЧИСТКА ВОДЫ НА ИОНИТНЫХ ФИЛЬТРАХ»

Выполнил: Студент заочного отделения

Электротехнического Факультета

ЭСЭ-21в

Левицкий П.В.

Севастополь

2007

ПЛАН

ВВЕДЕНИЕ

1. ВИДЫ ФИЛЬТРОВ И ОСОБЕННОСТИ ИХ СТРОЕНИЯ

1.1 Фильтры ФИПа, ионитные параллельноточные первой ступени

1.1.1 Назначение

1.1.2 Описание конструкции

1.1.3 Материалы

1.2 Фильтры ионитные параллельно-точные второй ступени

1.3 Фильтр ФИПр, ионитный противоточный

1.4 Фильтры ионитные смешанного действия

2. НЕКОТОРЫЕ МЕТОДЫ, ПРИМЕНЯЕМЫЕ В ИОНИТНЫХ ФИЛЬТРА

2.1 Натрий-катионитный метод умягчения воды

2.2 Водород-натрий-катионитный метод умягчения воды

2.3 Опреснение и обессоливание воды

ЗАКЛЮЧЕНИЕ

ВВЕДЕНИЕ

Вода — это великая ценность, которую человек получил в дар от природы. Ее надо оберегать и уметь рационально использовать. Потребление некачественной воды может нанести непоправимый вред здоровью человека. Что касается неочищенной воды технического назначения, примеси, содержащиеся в ней, разрушают бытовые приборы, сантехнику. Накипь и осадок в конечном итоге приводят к выходу из строя трубопроводов и повышению расхода топлива. Чтобы сделать воду пригодной для применения в быту и промышленности, ее необходимо предварительно подготавливать с помощью оборудования для очистки воды.

Способов, которыми можно очистить воду, существует несколько. В каждом конкретном случае необходимо знать от чего придется чистить воду. Это можно выяснить с помощью анализа воды.

ИОНИТЫ (ионообменники) — твердые нерастворимые вещества, способные обменивать свои ионы с ионами внешней среды (ионный обмен).

ИОННЫЙ ОБМЕН — обратимая химическая реакция, при которой происходит обмен ионами между твердым веществом (ионитом) и раствором электролита либо между различными электролитами, находящимися в растворе. Ионный обмен применяют для обессоливания воды, в гидрометаллургии, в хроматографии.

ИОНИТЫ подразделяются на аниониты и катиониты, обменивающие соответственно отрицательно или положительно заряженные ионы, и амфолиты, способные обменивать одновременно те и другие ионы. Наиболее распространены синтетические органические иониты — ионообменные смолы. ИОНООБМЕННЫЕ СМОЛЫ- синтетические органические иониты. Смолы, обменивающие с ионами внешней среды отрицательно заряженные ионы, называются анионообменными, положительно заряженные ионы — катионообменными, а одновременно ионы того и другого знака — полиамфолитами. Получают полимеризацией или поликонденсацией органических соединений, а также путем химических превращений готовых полимеров. Широко распространены ионообменные смолы на основе сополимеров стирола с дивинилбензолом, феноло-формальдегидных смол, полиаминов.

Из неорганических ионитов важны природные и синтетические алюмосиликаты, гидроксиды и соли поливалентных металлов. Применяются главным образом для умягчения и деминерализации воды, а также извлечения из растворов следов металлов, очистки сахарных сиропов, лекарств и многих др.

АЛЮМОСИЛИКАТЫ — группа породообразующих минералов класса силикатов; алюмокремниевых соединений с катионами щелочных металлов (полевые шпаты, слюды, минералы глин и др.).

Ионитные параллельно-точные фильтры предназначены для умягчения и обессоливания природных вод. Изготавливаются ионообменные фильтры с нижним распределительным устройством на бетонном основании или копирующего типа из нержавеющей стали. Фильтры диаметром 0,7; 1,0; 1,4; 1,5 м могут быть изготовлены с устройством нижним сборно-распределительным «ложное днище», укомплектованным нержавеющими щелевыми колпачками типа ФЭЛ. Верхнее распределительное устройство ВРУ изготовлено из двух перфорированных стаканов вставленных друг в друга. Ионитные противоточные фильтры для технологии с гидравлическим зажатием слоев изготавливаются с устройствами сборно-распределительными из нержавеющей стали. Корпус может иметь фланцевый разъем для удобства и безопасности нанесения противокоррозионного покрытия. В этих фильтрах зажатие слоя ионита производится через среднее и верхнее сборно-распределительное устройства за счет направления части отработанного регенерационного раствора или подачи исходной воды по контуру рециркуляции.

1. ВИДЫ ФИЛЬТРОВ И ОСОБЕННОСТИ ИХ СТРОЕНИЯ

Ионитные фильтры классифицируются в зависимости от принципа действия, а также от целей, преследуемых при прохождении воды через них.

1.1 Фильтры ФИПа, ионитные параллельно-точные первой ступени

1.1.1 Назначение

Фильтры ионитные параллельно-точные первой ступени используются на водоподготовительных установках электростанций, промышленных и отопительных котельных и предназначены для обработки воды с целью удаления из нее катионов накипеобразователей ( Ca2+ и Mg2+ ) в процессе натрий-водород- или аммоний-натрий-катионирования, а также сульфатных, хлоридных и нитратных анионов в процессе обессоливания природных вод. Фильтры ионитные параллельно-точные первой ступени для водород-катионирования предназначены для замены катионов Са-, Мg2+ и Nа+ исходной воды на катионы Р+ в схемах умягчения и химического обессоливания воды, используются на водоподготовительных установках промышленных и отопительных котельных. Загрузка ионитных фильтров ФИПа – сульфоуголь, катионит Ку-2,

1.1.2 Описание конструкции

Ионитные параллельно-точные фильтры первой ступени состоят из корпуса, нижнего и верхнего распределительных устройств, трубопроводов, запорной арматуры и пробоотборных устройств. Корпуса фильтров цилиндрические, сварные из листовой стали, с приваренными эллиптическими штампованными днищами. К нижнему днищу приварены три опоры для установки фильтров. В центре верхнего и нижнего днищ фильтров приварены фланцы, к которым снаружи по фронту фильтра присоединяют трубопроводы, а внутри – устройства-распределители. Верхнее распределительное устройство типа «стакан в стакане» состоит из перфорированных труб, одна из которых вставлена в другую, нижний конец их заглушен. Верхний конец внутренней трубы соединен с подающей трубой, наружная труба снизу соединена с внутренней трубой, а верхним концом упирается в эллиптическое днище. В фильтрах диаметром до 1,5 м нижнее сборно-распределительное устройство изготавливается двух видов: «ложное днище» или «копирующего типа». В фильтрах диаметром 2,0 м до 3,0 м нижнее сборно-распределительное устройство-«копирующего_типа». Фильтры ФИПаI 1,5-0,6; ФИПаI 2,0-0,6; ФИПаI 2,6-0,6 имеют нижнее распределительное устройство копирующего типа-«паук». 1.1.3. Материалы.

Копрус фильтра изготовлен из углеродистой стали и приспособлен для нанесения противокоррозионного покрытия. Трубопроводы внешней обвязки -из углеродистой стали для Na — катионитовых фильтров и из нержавеющей стали для H-OH — ионирования. Верхнее и нижнее сборно-распределительное устройство и щелевые колпачки типа ФЭЛ- из нержавеющей стали.

1.2 Фильтры ионитные параллельно-точные второй ступени

Фильтры ионитные параллельно-точные второй ступени предназначены для работы в различных схемах установок глубокого и полного химического обессоливания для второй и третьей ступени натрий-катионирования, водород-катионирования и анионирования и используются на водоподготовительных установках электростанций, промышленных и отопительных котельных. При использовании данных фильтров в схемах глубокого обессоливания из воды удаляются практически все катионы и анионы, за исключением кремниевой кислоты, а при использовании в схемах полного химического обессоливания удаляется и кремниевая кислота.

1.3 Фильтр ФИПр, ионитный противоточный

Фильтры ионитные противоточные ФИПр предназначены для использования в составе установок обессоливания или умягчения воды на водоподготовительных системах электростанций, промышленных и отопительных котельных. Загрузка ионитных фильтров ФИПр – сульфоуголь, катионит Ку-2,

Стоит обратить внимание на описание противоточного фильтра, так как противоточная технология ионирования — реальный путь к экономии средств, реагентов и воды на собственные нужды.

Очистка воды в теплоэнергетике — весьма ответственна и высокозатратна. На водоподготовительных ионообменных установках тепловых станций, отопительных и промышленных котельных актуальным является вопрос снижения удельных расходов реагентов на регенерацию, ионитов, сокращения расходов воды на собственные нужды и уменьшение солевых стоков. Одним из наиболее эффективных способов решения этой проблемы на сегодня является переход на противоточную технологию ионирования. Положительные особенности противоточной схемы ионирования:

· Сокращение расходов реагентов в 1,5-2 раза; Сокращение расходов воды на собственные нужды — в 2 раза; Сокращение количества фильтрующего материала — в 1,5 раза; Уменьшение объема солевых стоков — в 1,5 раза. Уменьшение числа работающих фильтров

Кроме того, увеличивается единичная производительность фильтров: например, фильтр диаметром 3000 мм может работать с производительностью 250-280 м3 /час и давать необходимое количество воды в одну ступень.

1.4 Фильтры ионитные смешанного действия

Фильтры ионитные смешанного действия с внутренней и наружной (выносной) регенерацией ионитов предназначены для глубокого обессоливания и обескремниевания турбинного конденсата и добавочной воды. Фильтрование конденсата и добавочной воды осуществляется через слой перемешанных зерен Н-катионита и ОН-анионита. Фильтры смешанного действия используются на электростанциях в составе водоподготовительных установок для обработки добавочной воды и в составе конденсатоочисток.

2. НЕКОТОРЫЕ МЕТОДЫ, ПРИМЕНЯЕМЫЕ В ИОНИТНЫХ ФИЛЬТРАХ

2.1 Натрий-катионитный метод умягчения воды

Натрий-катионитный метод следует применять для умягчения подземных вод и вод поверхностных источников с мутностью не более 5-8 мг/л и цветностью не более 30 град. При натрий-катионировании щелочность воды не изменяется. При одноступенчатом натрий-катионировании общая жесткость воды может быть снижена до 0,05-0,1 г-экв/куб.м, при двухступенчатом — до 0,01 г-экв/куб.м. Объем катионита W(к), куб.м, в фильтрах первой ступени следует определять по формуле

где q(у) — расход умягченной воды, куб.м/ч; Ж(о.исх) — общая жесткость исходной воды, г-экв/куб.м; — рабочая обменная емкость катионита при натрий-катионировании; г-экв/куб.м; n(р) — число регенераций каждого фильтра в сутки, принимаемое в пределах от одной до трех.

Скорость фильтрования воды через катионит для напорных фильтров первой ступени при нормальном режиме не должна превышать при общей жесткости воды: до 5 г-экв/куб.м — 25 м/ч; 5-10 г-экв/куб.м — 15 м/ч;

Натрий-катионитные фильтры второй ступени следует рассчитывать принимая высоту слоя катионита — 1,5 м; скорость фильтрования — не более 40 м/ч; удельный расход соли для регенерации катионита в фильтрах второй ступени 300-400 г на 1 г-экв задержанных катионов жесткости; онцентрацию регенерационного раствора — 8-12 %.-15 г-экв/куб.м — 10 м/ч.

При обосновании для умягчения воды повышенной минерализации допускается применение схем противоточного или ступенчато-противоточного натрий-катионирования.

2.2 Водород-натрий-катионитный метод умягчения воды

Водород-натрий-катионитный метод следует принимать для удаления из воды катионов жесткости (кальция и магния) и одновременного снижения щелочности воды. Этот метод следует применять для обработки подземных вод и вод поверхностных источников с мутностью не более 5-8 мг/л и цветностью не более 30 град.

Умягчение воды надлежит принимать по схемам: параллельного водород-натрий-катионирования, позволяющего получить фильтрат общей жесткостью 0,1 г-экв/куб.м с остаточной щелочностью 0,4 г-экв/куб.м; при этом суммарное содержание хлоридов и сульфатов в исходной воде должно быть не более 4 г-экв/куб.м и натрия не более 2 г-экв/куб.м. и последовательного водород-натрий-катионирования с «голодной» регенерацией водород-катионитных фильтров; при этом общая жесткость фильтрата составит 0,01 г-экв/куб.м, щелочность — 0,7 г-экв/куб.м; и водород-катионирования с «голодной» регенерацией и последующим фильтрованием через буферные саморегенерирующиеся катионитные фильтры; при этом общая жесткость фильтрата будет на 0,7-1,5 г-экв/куб.м выше некарбонатной жесткости исходной воды, щелочность фильтрата — 0,7-1,5 г-экв/куб.м.

Катионитные буферные фильтры допускается не предусматривать, если не требуется поддержания остаточной жесткости, щелочности и рН в строго определенных пределах.

Следует предусматривать возможность регенерации буферных фильтров раствором технической поваренной соли.

Объем катионита W(н), куб.м, в водород-катионитных фильтрах следует определять по формуле

Объем катионита W(Na), куб.м, в натрий-катионитных фильтрах следует определять по формуле

где Ж(o) — общая жесткость умягченной воды, г-экв/куб.м; n(p) — число регенераций каждого фильтра в сутки. — рабочая обменная емкость водород-катионита, г-экв/куб.м; рабочая обменная емкость натрий-катионита, г-экв/куб.м; С(Na) — концентрация в воде натрия, г-экв/куб.м.

Отработавшие регенерационные растворы ионитных умягчительных установок в зависимости от местных условий следует направлять в накопители, бытовую или производственную канализацию; надлежит также рассматривать возможность обработки концентрированной части вод для их повторного использования. Отработавшие растворы перед сбросом в канализацию после усреднения надлежит при необходимости нейтрализовать. При этом получающиеся осадки карбоната кальция и двуокиси магния следует выделять отстаиванием и направлять в накопитель.

2.3 Опреснение и обессоливание воды

Ионный обмен

Обессоливание воды ионным обменом следует производить при общем солесодержании воды до 1500-2000 мг/л и суммарном содержании хлоридов и сульфатов не более 5 мг-экв/л. Вода, подаваемая на ионитные фильтры, должна содержать, не более: взвешенных веществ — 8 мг/л, цветность — 30° и перманганатную окисляемость — 7 мг О/л. Вода, не отвечающая этим требованиям, должна предварительно обрабатываться. Обессоливание воды ионным обменом по одноступенчатой схеме надлежит предусматривать последовательным фильтрованием через водород-катионит и слабоосновный анионит с последующим удалением двуокиси углерода из воды на дегазаторах. Солесодержание воды, обработанной по одноступенчатой схеме, должно составлять не более 20 мг/л (удельная электропроводность — 35-45 мкОм/см), содержание кремния при этом не снижается. При двухступенчатой схеме обессоливания воды следует предусматривать: водород-катионитные фильтры первой ступени; анионитные фильтры первой ступени, загруженные слабоосновным анионитом; водород-катионитные фильтры второй ступени; дегазаторы для удаления двуокиси углерода; анионитные фильтры второй ступени, загруженные сильноосновным анионитом для удаления кремниевой кислоты. Солесодержание воды, обработанной по двухступенчатой схеме, должно быть не более 0,5 мг/л (удельная электропроводность 1,6 — 1,8 мкОм/см) и содержание кремнекислоты — не более 0,1 мг/л. При трехступенчатой схеме обессоливания воды, предусматрена третья ступень фильтров со смешанной загрузкой, состоящей из высококислотного катионита и высокоосновного анионита (ФСД). Солесодержание воды, обработанной по трехступенчатой схеме, не должно превышать 0,1 мг/л (удельная электропроводность 0,3 — 0,4 мкОм/см) и содержание кремнекислоты не более 0,02 мг/л.

3. ЗАКЛЮЧЕНИЕ

Перспективные направления.

А)Сегодня ионитные фильтры нашли широкое применение. В этой области ведётся большая научная работа, в частности изобретён новый способ регенерации ионитных фильтров, что позволяет повысить экономичность способа. Способ регенерации включает взрыхление промывочной водой слоя ионита и блокирующего слоя, периодическую подачу раствора реагента через слой ионита и гидравлическое зажатие блокирующего слоя локальными потоками, осуществляемое поочередной подачей исходной воды и раствора реагента со скоростью движения локального потока раствора реагента в блокирующем слое, определяемой по формуле , где vδл — скорость движения локального потока; Vосн — скорость движения раствора реагента в слое ионита; λ — коэффициент равный 4-5; hδл и hосн — — высота соответственно блокирующего и основного слоев.

Б)Одна из тенденций современного рынка ионообменных смол – вытеснение полидисперсных смол монодисперсными. Существуют новые разработки на основе технологии UPCORE. К ним следует отнести использование в катионитном фильтре дополнительного слоя крупнозернистого сополимерастирола и дивинилбензола, располагаемого над слоем катионита, что позволяет: использовать более высокие скорости фильтрации и защитить катиониты от загрязнений.

В) Разработана новая технология ионного обмена для получения глубокообессоленной воды – Multrex. Применяя обычную схему H-OH c противоточной регенерацией, можно получить частично обессоленную воду с проводимостью 0,8–2,0 мкСм/см, после чего используются фильтры смешанного действия для получения глубокообессоленной воды качеством 0,2–0,5 мкСм/см. Вода, получаемая потехнологии Multrex, обладает электропроводностью 0,06–0,1 мкСм/см. Новшества системы – использование Н-катионитового фильтра в качестве полировочного для получения глубокообессоленной воды и автоматическая гидроперегрузка полированного слоя смолы в этот фильтр после каждой регенерации ионитной цепочки. Этим достигается высококачественная и экономичная регенерация полировочного фильтра. В России уже используются системы с полировочным Н-фильтром, но без выносной регенерации, а эта технология успешно эксплуатируется на нескольких заводах химической промышленности в Румынии на протяжении 4 лет.

www.ronl.ru

Доклад - Фильтр верхних частот Баттерворта

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ

Харьковский национальный университет радиоэлектроники

Кафедра РЭУ

КУРСОВАЯ РАБОТА
РАСЧЁТНО-ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

ФИЛЬТР ВЕРХНИХ ЧАСТОТ БАТТЕРВОРТА

Харьков 2008 г.

Техническое задание

Спроектировать фильтр верхних частот (ФВЧ) с аппроксимацией амплитудно-частотной характеристики (АЧХ) полиномом Баттерворта, определить необходимый порядок фильтра, если заданы параметры АЧХ (рис.1): К0=26дБ

Кп =23дБ

Кз =-5дБ

fп =10кГц

fз =4кГц

UmВх =250мВ

где — максимальный коэффициент передачи фильтра;

— минимальный коэффициент передачи в полосе пропускания;

— максимальный коэффициент передачи фильтра в полосе задержки;

— частота среза;

— частота, начиная с которой коэффициент передачи фильтра меньше .

Рисунок 1 – Шаблон ФВЧ Баттерворта.

Обеспечить небольшую чувствительность к отклонениям номиналов элементов.

РЕФЕРАТ

Расчётно-пояснительная записка: 26 с., 11 рис., 6 табл.

Цель работы: синтез схемы активного RC-фильтра верхних частот и расчёт её компонентов.

Метод исследования: аппроксимация АЧХ фильтра полиномом Баттерворта.

Аппроксимированная передаточная функция реализована с помощью активного фильтра. Фильтр построен каскадным соединением независимых звеньев. В активных фильтрах использованы неинвертирующие усилители с конечным усилением, которые реализованы с помощью операционных усилителей.

Результаты работы могут использоваться для синтеза фильтров радиотехнической и бытовой аппаратуры.

Содержание

Вступление

1. Обзор аналогичных схем

2. Выбор и обоснование схемы фильтра

3. Топологическая модель фильтра и передаточная функция по напряжению

3.1 Осуществление нормировки ФВЧ

3.2 Определение необходимого порядка фильтра

3.3 Определение полинома Баттерворта

3.4 Обратный переход от нормированного к проектируемому ФВЧ

3.5Переход от передаточной функции к схеме

3.6Переход от передаточной функции к схеме

3.7 Выбор схемы активного ФВЧ третьего порядка

4. Расчёт элементов схемы

5. Методика настройки регулировки разработанного фильтра

Выводы

Список использованной литературы

Вступление

До недавнего времени результаты сопоставления цифровых и аналоговых устройств в радиоаппаратуре и технических средствах электросвязи не могли не вызывать чувства неудовлетворённости. Цифровые узлы, реализуемые с широким использованием интегральных микросхем (ИМС), выгодно отличались своей конструктивно-технологической завершённостью. Иначе обстояло дело с узлами аналоговой обработки сигналов, которые, например, в телекоммуникациях составляли от 40 до 60% объёма и массы аппаратуры связи. Громоздкие, содержащие большое число ненадёжных и трудоёмких намоточных элементов, они выглядели на фоне больших интегральных схем столь удручающе, что породили у ряда специалистов мнение о необходимости “тотальной цифризации” радиоэлектронной аппаратуры.

Последнее, однако, как любая другая крайность, не привело (да и не могло привести) к результатам, адекватным ожидаемым. Истина, как и во всех других случаях, оказалась где-то посередине. В ряде случаев более эффективной оказывается аппаратура, построенная на функциональных аналоговых узлах, элементный базис которых адекватен возможностям и ограничениям микроэлектроники.

Адекватность в данном случае может быть обеспечена переходом к активным RC-цепям, в элементный базис которых не входят катушки индуктивностей и трансформаторы, принципиально не реализуемые средствами микроэлектроники.

Обоснованность такого перехода определяется в настоящее время, с одной стороны, достижениями теории активных RC-цепей, а с другой – успехами микроэлектроники, предоставившей в распоряжение разработчиков высококачественные линейные интегральные схемы, в том числе и интегральные операционные усилители (ОУ). Эти ОУ, обладая большими функциональными возможностями, существенно обогатили аналоговую схемотехнику. Особенно ярко это проявилось в схемотехнику активных фильтров.

До 60-х годов для реализации фильтров применялись, в основном пассивные элементы, т.е. индуктивности, конденсаторы и резисторы. Основной проблемой при реализации таких фильтров оказывается размер катушек индуктивности (на низких частотах они становятся слишком громоздкими). С разработкой в 60-х годах интегральных операционных усилителей появилось новое направление проектирования активных фильтров на базе ОУ. В активных фильтрах применяются резисторы, конденсаторы и ОУ (активные компоненты), но в них нет катушек индуктивности. В дальнейшем активные фильтры почти полностью заменили пассивные. Сейчас пассивные фильтры применяются только на высоких частотах (выше 1 МГц), за пределами частотного диапазона большинства ОУ широкого применения. Но даже во многих высокочастотных устройствах, например в радиопередатчиках и приёмниках, традиционные RLC-фильтры заменяются кварцевыми фильтрами и фильтрами на поверхностных акустических волнах.

Сейчас во многих случаях аналоговые фильтры заменяются цифровыми. Работа цифровых фильтров обеспечивается, в основном, программными средствами, поэтому они оказываются значительно более гибкими в применении по сравнению с аналоговыми. С помощью цифровых фильтров можно реализовать такие передаточные функции, которые очень трудно получить обычными методами. Тем не менее, цифровые фильтры пока не могут заменить аналоговые во всех ситуациях, поэтому сохраняется потребность в наиболее популярных аналоговых фильтрах – активных RC-фильтрах.

1. Обзор аналогичных схем

Фильтры – это частотно-избирательные устройства, которые пропускают или задерживают сигналы, лежащие в определённых полосах частот.

Фильтры можно классифицировать по их частотным характеристикам:

1. Фильтры нижних частот (ФНЧ) – пропускают все колебания с частотами не выше некоторой частоты среза и постоянную составляющую.

2. Фильтры верхних частот (ФНЧ) – пропускают все колебания не ниже некоторой частоты среза.

3. Полосовые фильтры (ПФ) – пропускают колебания в определённой полосе частот, которая определяется по некоторому уровню частотной характеристики.

4. Полосно-подавляющие фильтры (ППФ) — задерживают колебания в определённой полосе частот, которая определяется по некоторому уровню частотной характеристики.

5. Режекторные фильтры (РФ) – вид ППФ, имеющий узкую полосу задержки и называемый ещё фильтром-пробкой.

6. Фазовые фильтры (ФФ) – имеют постоянный в идеальном случае коэффициент передачи на всех частотах и предназначен для изменения фазы входных сигналов (в частности для временной задержки сигналов).

Рисунок 1.1 – Основные типы фильтров

С помощью активных RC-фильтров нельзя получить идеальные формы частотных характеристик в виде показанных на рис.1.1 прямоугольников со строго постоянным коэффициентом передачи в полосе пропускания, бесконечным ослаблением в полосе подавления и бесконечной крутизной спада при переходе от полосы пропускания к полосе подавления. Проектирование активного фильтра всегда представляет собой поиск компромисса между идеальной формой характеристики и сложностью её реализации. Это называется “проблемой аппроксимации“. Во многих случаях требования к качеству фильтрации позволяют обойтись простейшими фильтрами первого и второго порядков. Некоторые схемы таких фильтров представлены ниже. Проектирование фильтра в этом случае сводиться к выбору схемы с наиболее подходящей конфигурацией и последующему расчёту значений номиналов элементов для конкретных частот.

Однако бывают ситуации, когда требования к фильтрации могут оказаться гораздо более жёсткими, и могут потребоваться схемы более высоких порядков, чем первый и второй. Проектирование фильтров высоких порядков является более сложной задачей, чему посвящена данная курсовая работа.

Ниже приведены некоторые основные схемы первого второго порядков с описанием достоинств и недостатков каждой из них.

1. ФНЧ-I и ФВЧ-Iна основе не инвертирующего усилителя.

а) б)

Рисунок 1.2 – Фильтры на основе неинвертирующего усилителя:

а) ФНЧ-I, б) ФВЧ-I.

К достоинствам схем фильтров можно отнести главным образом простоту реализации и настройки, недостатки – малая крутизна частотных характеристик, малоустойчивы к самовозбуждению.

2. ФНЧ-IIи ФВЧ-IIс много петлевой обратной связью.

а) б)

Рисунок 1.3 – Фильтры с многопетлевой обратной связью:

а) ФНЧ-II, б) ФВЧ-II.

Таблица 2.1 – Достоинства и недостатки ФНЧ-II с много петлевой обратной связью

Достоинства Недостатки

Можно построить ФНЧ с

Относительно невысокая чувстви-тельность к отклонениям значений элементов (почти всегда меньше 1)

Относительно малое входное сопротивление

Легко настраиваются только два параметра и

Большой диапазон номинальных значений элементов, особенно при больших и коэффициенте передачи.

Таблица 2.2 – Достоинства и недостатки ФВЧ-II с много петлевой обратной связью

Достоинства Недостатки

Можно реализовать фильтры со значением. К < 1

Относительно небольшая чувствительность к отклонениям значений элементов

Большой диапазон номиналов элементов.

Нужны три конденсатора.

Коэффициент передачи равен отношению ёмкостей двух конденсаторов, что уменьшает стабильность по сравнению с отношением двух резисторов.

Сложность настройки.

2. ФНЧ-IIи ФВЧ-IIСаллена-Кея.

а) б)

Рисунок 1.4 – Фильтры Саллена-Кея:

а) ФНЧ-II, б) ФВЧ-II

Таблица 2.3 – Достоинства и недостатки ФНЧ-II Саллена-Кея.

Достоинства Недостатки

Высокое входное сопротивление

Относительно небольшой диапазон номинальных элементов.

Относительно высокая чувствительность к разбросу значений элементов.

Ограниченные возможности реализации фильтров с. К <1

Легко настраиваются толькодва параметра

Таблица 2.4 – Достоинства и недостатки ФВЧ-II Саллена-Кея.

Достоинства Недостатки
Относительно небольшой диапазон номиналов элементов

Относительно высокая чувствительность к отклонениям значений элементов

Не удаётся перекрыть весь диапазон возможных значений. К, и

3. ФНЧ-IIи ФВЧ-IIна основе конверторов полного сопротивления.

а)

б)

Рисунок 1.5 – Схема ФНЧ IIна основе конверторов полного сопротивления:

а) ФНЧ-II, б) ФВЧ-II.

Таблица 2.3 – Достоинства и недостатки ФНЧ-II и ФВЧ-II на основе конверторов полного сопротивления.

Достоинства Недостатки

Достижимы как малые, так и большие значения добротности

Невысокая чувствительность , К и к отклонениям значений элементов от номиналов (всегда меньше 1)

Возможна независимая настройка , К и

Большие значения добротности достигаются без чрезмерного расширения диапазона номиналов элементов

Требуются два ОУ

2. Выбор и обоснование схемы фильтра

Методы проектирования фильтров отличаются по конструктивным особенностям. Проектирования пассивных RC-фильтров большей частью определяется структурной схемой

Активные фильтры АФ математически описывают передаточною функцией. Типам АЧХ предоставлен названия полиномов передаточных функций. Каждый тип АЧХ реализуют определенным количеством полюсов (RC-цепей) в соответствии с заданной крутизной спада АЧХ. Известнейшими, есть аппроксимации Баттерворта, Бесселя, Чебышева.

Фильтр Баттерворта имеет максимально плоскую АЧХ, в полосе подавления наклон переходного участка равняется 6 дБ/окт на полюс, но он имеет нелинейную ФЧХ, входное импульсное напряжение служит причиной осцилляции на выходе, потому фильтр используется для непрерывных сигналов.

Фильтр Бесселя имеет линейную ФЧХ, небольшую крутизну переходного участка АЧХ. Сигналы всех частот в полосе пропускания имеют одинаковые временные задержки, поэтому он пригодный для фильтрации прямоугольных импульсов, которые надо посылать без искажений.

Фильтр Чебышева — фильтр равных волн в СП, масс плоскую форму за ее пределами, пригодный для непрерывных сигналов в случаях, капы надо иметь крутой склон АЧХ за частотой среза.

Простые схемы фильтров первого и второго порядков применяются лишь, когда нет жестких требований к качеству фильтрации.

Каскадное соединение звеньев фильтра осуществляют, если нужен порядок фильтра выше второго, то есть когда надо сформировать передаточную характеристику с очень большим послаблением сигналов в полосе подавленный и большой крутизной затухания АЧХ Результирующую передаточную функцию получают, перемножая частичные коэффициенты передачи

Цепи строят по одинаковой схеме, но номиналы элементов

R, С разные, и зависят от частот среза фильтра и его ланок: fзр.ф /fзр.л

Однако следует помнить, что каскадное соединение, например, двух фильтров Баттерворта второго порядка не дает фильтр Баттерворта четвертого порядка, так как результирующий фильтр будет иметь другую частоту среза и другую АЧХ. Поэтому необходимо выбирать коэффициенты одиночных звеньев таким образом, чтобы следующее произведение передаточных функций отвечал выбранному типу аппроксимации. Поэтому проектирования АФ вызовет затруднения со стороны получения идеальной характеристики и сложности ее реализации.

Благодаря очень большим входным и маленьким выходным сопротивлениям каждого звена обеспечивается отсутствие искажений заданной передаточной функции и возможность независимого регулирования каждого звена. Независимость звеньев дает возможность широко регулировать свойства каждого звена изменением его параметров.

Принципиально не имеет значения, в котором порядке размещенные частичные фильтры, так как результирующая передаточная функция всегда будет одинаковой. Тем не менее, существуют разнообразные практические рекомендации относительно порядка соединения частичных фильтров. Например, для защиты от самовозбуждения следует организовать последовательность звеньев в порядке возрастания частичной предельной частоты. Другой порядок может привести к самовозбуждению второго звена в области выброса его АЧХ, поскольку фильтры с высшими предельными частотами обычно имеют большую добротность в области граничной частоты.

Другой критерий, связан с требованиями минимизации, уровня шумов на входе. В этом случае последовательность звеньев обратная, так как фильтр с минимальной предельной частотой ослабляет уровень шума, который возникает от предыдущих звеньев каскада.

3. Топологическая модель фильтра и передаточная функция по напряжению

3.1 В данном пункте будет выбран порядок ФВЧ Баттерворта и определён вид его передаточной функции согласно заданным в ТЗ параметрам:

Рисунок 2.1 – Шаблон ФВЧ согласно техническому заданию.

Топологическая модель фильтра.

3.2 Осуществление нормировки ФВЧ

По условию задания находим нужные нам граничные условия частоты фильтра. И нормируем за коэффициентом передачи та за частотою.

За коэффициентом передачи:

Кmax =K0-Kп =26-23=3дБ

Кmin =К0-Кз =26-(-5)=31дБ

По частоте:

3.3 Определение необходимого порядка фильтра

Округляем nдо ближайшего целого значения: n = 3.

Таким образом, для удовлетворения требований, заданных шаблоном, необходим фильтр третьего порядка.

3.4 Определение полинома Баттерворта

Согласно таблице нормированных передаточных функций фильтров Баттерворта находим полином Баттерворта третьего порядка:

3.5 Обратный переход от нормированного к проектируемому ФВЧ

Проведём обратный переход от нормированного ФВЧ к проектируемому ФВЧ.

· масштабирование по коэффициенту передачи:

.

· масштабирование по частоте:

Производим замену

.

В результате масштабирования получаем передаточную функцию W(p) в виде:

Рисунок 2.2 – АЧХ проектируемого ФВЧ Баттерворта.

3.6 Переход от передаточной функции к схеме

Представим передаточную функцию проектируемого ФВЧ третьего порядка в виде произведения передаточных функций двух активных ФВЧ первого и второго порядка, т.е. в виде

и ,

где – коэффициент передачи на бесконечно высокой частоте;

– частота полюса;

– добротность фильтра (отношение коэффициента усиления на частоте к коэффициенту усиления в полосе пропускания).

Этот переход справедлив, так как общий порядок последовательно соединенных активных фильтров будет равен сумме порядков отдельно взятых фильтров (1 + 2 = 3).

Общий коэффициент передачи фильтра (K0 = 19.952) будет определяться произведением коэффициентов передачи отдельных фильтров (K1, K2).

Разложив передаточную функцию на квадратичные сомножители, получим:

В этом выражении

. (2.5.1)

Нетрудно заметить, что частоты полюсов и добротности передаточных функций отличаются.

Для первой передаточной функции:

частота полюса ;

добротность ФВЧ-Iпостоянна и равна .

Для второй передаточной функции:

частота полюса ;

добротность .

Для того чтобы к операционным усилителям в каждом каскаде предъявлялись примерно равные требования по частотным свойствам, целесообразно общий коэффициент передачи всего фильтра распределить между каждым из каскадов обратно пропорционально добротности соответствующих каскадов, а характерную частоту (частоту единичного усиления ОУ) выбрать максимальную среди всех каскадов.

Так как в данном случае ФВЧ состоит из двух каскадов, то указанное выше условие можно записать в виде:

или

. (2.5.2)

Подставляя выражение (2.5.2) в (2.5.1), получаем:

;

откуда

;

.

Проверим правильность расчёта коэффициентов передачи. Общий коэффициент передачи фильтра в разах будет определяться произведением коэффициентов отдельных фильтров. Переведём коэффициент издБ в разы:

.

, т.е. расчёты верны.

Запишем передаточную характеристику с учётом расcчитанных выше величин ():

.

3.7 Выбор схемы активного ФВЧ третьего порядка

Так как согласно заданию необходимо обеспечить небольшую чувствительность к отклонениям элементов, то выберем в качестве первого каскада ФВЧ-Iна основе не инвертирующего усилителя (рис.1.2, б), а второго – ФВЧ-IIна основе конверторов полного сопротивления (КПС), схема которого приведена на рис.1.5, б.

Для ФВЧ-I на основе не инвертирующего усилителя зависимость параметров фильтра от номиналов элементов схемы таково:

; (3.1)

. (3.2)

Для ФВЧ-IIна основе КПС параметры фильтра зависят от номиналов элементов следующим образом:

; (3.3)

; (3.4)

;

4. Расчёт элементов схемы

· Расчёт первого каскада (ФВЧ I) с параметрами

.

Выберем R1 исходя из требований к величине входного сопротивления (): R1 = 200 кОм. Тогда из (3.2) следует, что

.

Выберем R2 = 10 кОм, тогда из (3.1) следует, что

.

· Расчёт второго каскада (ФВЧ II) с параметрами

.

Рассчитать номинал ёмкости можно, воспользовавшись следующей инженерной формулой:

. .

Тогда (коэффициент в числителе подобран так, чтобы получить номинал ёмкости из стандартного ряда Е24). Итак С2 = 4.3 нФ.

Из (3.3) следует, что

.

Из (3.1) следует, что

.

Пусть . Итак С1 = 36 нФ.

Далее выбираем , а из (3.2) имеем:

.

Таблица 4.1– Номиналы элементов фильтра

Первый каскад
Наим. эл. R1, кОм R2, кОм R3, кОм C1, нФ
Расчёт 200 10 43.1 1.59
Е24 200 10 43 1.6
Второй каскад
Наим. эл. R1, кОм R2, кОм R3, кОм R4, кОм R5, кОм C1, нФ C2, нФ
Расчёт 41.93 27.56 43 10 74.03 36 4.3
Е24 42 28 43 10 75 36 4.3

Из данных таблицы 4.1мы можем приступить к моделированию схемы фильтра.

Это мы делаем при помощи специальной программы Workbench5.0.

Схема и результаты моделирования приведены на рис.4.1. и рис.4.2, а-б.

Рисунок 4.1 – Схема ФВЧ Баттерворта третьего порядка.

а)

б)

Рисунок 4.2– Результирующие АЧХ (а) и ФЧХ (б) фильтра.

5. Методика настройки и регулирования разработанного фильтра

Чтобы в реальном фильтре обеспечивалась нужная АЧХ, сопротивления и емкости нужно выбирать с большой точностью.

Это очень просто сделать для резисторов, если их брать с допуском не более 1%, и тяжелее для емкостей конденсаторов, потому что допуски у них в районе 5-20%. Из-за этого сначала рассчитывается емкость, а потом рассчитывается сопротивление резисторов.

5.1 Выбор типа конденсаторов

· Выберем низкочастотный тип конденсаторов в силу их меньшей стоимости.

· Необходимы небольшие габариты и масса конденсаторов

· Выбирать конденсаторы нужно с как можно меньшими потерями (с маленьким тангенсом угла диэлектрических потерь).

Оптимальными по этим требованиям можно считать конденсаторы типа К10-17а – низкочастотные керамические конденсаторы с малыми МГП, имеющие изоляцию, однако имеют сравнительно высокие потери и частотно-зависимый тангенс угла диэлектрических потерь.

Некоторые параметры группы К10-17 (взяты из [2]):

— Размеры, мм.

B4,6…8,6

L6,8…12,0

A2.5…7.5

— Масса, г0,5…2

— Допускаемое отклонение ёмкости, %

— Тангенс угла потерь0,0015

— Сопротивление изоляции, МОм1000

— Диапазон рабочих температур, – 60…+125

5.2 Выбор типа резисторов

· Для схемы проектируемого фильтра, чтобы обеспечить низкую температурную зависимость, необходимо выбирать резисторы с минимальным ТКС.

· Выбираемые резисторы должны обладать минимальными собственными ёмкостью и индуктивностью, поэтому выберем непроволочный тип резисторов.

· Однако у непроволочных резисторов более высокий уровень токовых шумов, поэтому необходимо учесть и параметр уровня собственных шумов резисторов.

Прецизионные резисторы типа С2-29В удовлетворяют заданным требованиям (параметры взяты из [2]):

— номинальная мощность, Вт 0.125;

— диапазон номинальных сопротивлений, Ом ;

— ТКС (в интервале температур ),

— ТКС (в интервале температур ),

— Уровень собственных шумов, мкВ/В1…5

— Предельное рабочее напряжение постоянного

и переменного тока, В200

5.3 Выбор типа операционных усилителей

· Главный критерий при выборе ОУ – это его частотные свойства, так как реальные ОУ имеют конечную полосу пропускания. Для того чтобы частотные свойства ОУ не влияли на характеристику проектируемого фильтра, необходимо чтоб для частоты единичного усиления ОУ в i-том каскаде выполнялось соотношение:

Для первого каскада: .

Для второго каскада: .

Выбирая большее значение, получаем, что частота единичного усиления ОУ не должна быть менее 100 Кгц.

· Коэффициент усиления ОУ должен быть достаточно большим.

· Напряжение питания ОУ должно соответствовать напряжению источников питания, если таковое известно. В противном случае, желательно выбрать ОУ с широким диапазоном напряжений питания.

· При выборе ОУ для многокаскадного ФВЧ лучше выбрать ОУ с возможно меньшим напряжения смещения.

Согласно справочнику [3] выберем ОУ типа 140УД6А, конструктивно оформленный в корпусе типа 301.8-2. ОУ этого типа являются ОУ общего назначения с внутренней частотной коррекцией и защитой выхода при коротких замыканиях нагрузки и имеют следующие параметры:

— напряжение питания , В

— напряжение питания , В

— ток потребления , мА

— напряжение смещения, мВ

— коэффициент усиления ОУ по напряжению

— частота единичного усиления , МГц1

Далее согласно выбранным типам элементов фильтра построим его схему электрическую принципиальную (чертёж).

5.4 Методика настройки и регулировки разработанного фильтра

Настройка данного фильтра не представляет большой сложности. Параметры частотной характеристики “подгоняются” с помощью резисторов, как первого, так и второго каскадов независимо друг от друга, при чём настройка одного параметра фильтра не влияет на значения других параметров.

Настройка проводится следующим образом:

1. Коэффициент усиления устанавливается резисторами R2 первого и R5 второго каскада.

2. Частота полюса первого каскада настраивается резистором R1, частота полюса второго каскада – резистором R4.

3. Добротность второго каскада регулируется резистором R8, а добротность первого каскада не регулируется (постоянна при любых номиналах элементов).

Выводы

Итогом данной курсовой работы является получение и расчёт схемы заданного фильтра. ФВЧ с аппроксимацией частотных характеристик полиномом Баттерворта с параметрами, приведенными в техническом задании, имеет третий порядок и представляет собой двокаскадно — соединённых ФВЧ первого порядка (на основе не инвертирующего усилителя) и второго порядка (на основе конвертеров полного сопротивления). Схема содержит три операционных усилителя, восемь резисторов и три ёмкости. В данной схеме используется два источника питания по 15 В каждый.

Выбор схемы для каждого каскада общего фильтра проводился на основании технического задания (обеспечить малую чувствительность к отклонениям номиналов элементов) с учётом достоинств и недостатков каждого типа схем фильтров, используемых в качестве каскадов общего фильтра.

Номиналы элементов схемы подбирались и рассчитывались таким образом, чтобы максимально приблизить их к стандартному номинальному ряду Е24, а также, чтобы получить при этом как можно большее входное сопротивление каждого каскада фильтра.

После моделирования схемы фильтра с помощью пакета ElectronicsWorkbench5.0 (рис.5.1) были получены частотные характеристики (рис.5.2), имеющие требуемые параметры, приведённые в техническом задании (рис.2.2).

К достоинствам данной схемы можно отнести простоту настройки всех параметров фильтра, независимую настройку каждого каскада отдельно, малую чувствительность к отклонениям от номиналов элементов.

Недостатками является использование в схеме фильтра трёх операционных усилителей и соответственно его повышенная стоимость, а также относительно невысокое входное сопротивление (порядка 50 кОм).

Список использованной литературы

1. Зеленин А.Н., Костромицкий А.И., Бондарь Д.В. – Активные фильтры на операционных усилителях. – Х.: Телетех, 2001. изд. второе, исправ. и доп. – 150 с.: ил.

2. Резисторы, конденсаторы, трансформаторы, дроссели, коммутационные устройства РЭА: Справ./Н.Н. Акимов, Е.П. Ващуков, В.А. Прохоренко, Ю.П. Ходоренок. – Мн.: Беларусь, 2004. – 591 с.: ил.

Аналоговые интегральные схемы: Справ./А.Л. Булычёв, В.И. Галкин, 382 с.: В.А. Прохоренко. – 2-е изд., перераб. и доп. – Мн.: Беларусь, 1993. – черт.

www.ronl.ru